Monte Carlo methods for interacting spatial permutations

John Kerl

April 2, 2008

Abstract

These are lecture notes for a talk given to the Mathematical Physics Seminar at the University of Arizona Department of Mathematics on April 2, 2008.

This is a continuation of last week’s lecture given by Daniel Ueltschi. I sketch Monte Carlo methods which are used to estimate distribution of cycle length for the non-interacting case, the two-jump-interaction two-cycle case, and the general two-jump-interaction case.
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>2 Review of spatial random permutations</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Hamiltonians for bosons and permutations</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Models</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Conceptualization</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Context</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Physics literature</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Critical temperature</td>
<td>7</td>
</tr>
<tr>
<td>3 The computational project</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Density of sites in infinite cycles</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Tools</td>
<td>9</td>
</tr>
<tr>
<td>4 Visualization</td>
<td>11</td>
</tr>
<tr>
<td>4.1 H plots</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Dot plots</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Plots for the non-interacting model</td>
<td>12</td>
</tr>
<tr>
<td>4.4 Plots for the (r^2) mode</td>
<td>13</td>
</tr>
<tr>
<td>4.5 Plots for the interacting model</td>
<td>14</td>
</tr>
<tr>
<td>5 Computation of (V)</td>
<td>15</td>
</tr>
<tr>
<td>5.1 Brownian bridges</td>
<td>15</td>
</tr>
<tr>
<td>5.2 Software testing</td>
<td>15</td>
</tr>
<tr>
<td>5.3 Bridge results</td>
<td>16</td>
</tr>
<tr>
<td>5.4 Integral expression for (V)</td>
<td>17</td>
</tr>
<tr>
<td>5.5 Argument reduction</td>
<td>17</td>
</tr>
<tr>
<td>5.6 Visualization</td>
<td>18</td>
</tr>
<tr>
<td>6 Metropolis-Hastings</td>
<td>19</td>
</tr>
</tbody>
</table>
1 Acknowledgements

We implement Monte Carlo techniques for the following:

- arXiv:cond-mat/0703315 (Gandolfo, Ruiz, Ueltschi): describes the non-interacting model. Referred to herein as the GRU paper. (Monte Carlo results were obtained by Gandolfo and Ruiz; we have reproduced their results.)

- arXiv:0711.1188 (Betz, Ueltschi): Describes the interacting model in detail. The U07 paper (next) summarizes much of the content of this longer paper.

- arXiv:0712.2443v3 (Ueltschi): Describes the interacting model. Referred to herein as the U07 paper.

This work (spring 2008) is supported by NSF grant DMS-0601075.

Many thanks to the following people for multiple insights: Daniel Ueltschi, Tom Kennedy, Janek Wehr, Ben Dyhr.
2 Review of spatial random permutations

2.1 Hamiltonians for bosons and permutations

As described in [BU] and [U07], the Hamiltonian for \(N \) interacting bosons in a domain \(\Lambda \) is

\[
H = -\sum_{i=1}^{N} \Delta_i + \sum_{i<j} U(x_i - x_j) \quad \text{in} \quad L^2_{\text{sym}}(\Lambda^N).
\]

Then, with inverse temperature \(\beta \),

\[
\text{Tr} e^{-\beta H} = \frac{1}{N!} \int \prod dx \int dx_N \int dW_{x_1 x_{\pi(1)}}(w_1) \cdots dW_{x_N x_{\pi(N)}}(w_N) \exp\left\{-\frac{1}{2} \sum_{i<j} \int_0^{2\beta} U(w_i(s) - w_j(s)) ds \right\}
\]

where \(w_i(s) \) is a Brownian bridge running from \(x_i \) to \(x_{\pi(i)} \) in time \(2\beta \). Write this as

\[
\text{Tr} e^{-\beta H} = \frac{1}{N!} \int \prod dx \sum_{\pi} e^{-H(x,\pi)}
\]

where

\[
e^{-H(x,\pi)} = \left[\prod_{i=1}^{N} dW_{x_i x_{\pi(i)}}(\omega_i) \right] \exp\left\{-\frac{1}{2} \sum_{i<j} \int_0^{2\beta} U(w_i(s) - w_j(s)) ds \right\}.
\]

After cluster expansion (a highly non-trivial step, as yet lacking rigorous justification), one obtains

\[
H(x, \pi) = \frac{1}{4\beta} \sum_{i=1}^{N} |x_i - x_{\pi(i)}|^2 + \sum_{i<j} V(x_i, x_{\pi(i)}, x_j, x_{\pi(j)}) + \text{higher orders}.
\]

Note that the bosonic Hamiltonian \(H \) has been converted to a Hamiltonian \(H \) on permutations.

The interaction between jumps \(x \mapsto y \) and \(x' \mapsto y' \) is

\[
V(x, y, x', y') = \int [1 - e^{-\frac{1}{4\beta} \int_0^{2\beta} U(\omega(s)) ds}] dW_{x-x', y-y'}(\omega).
\]

If \(U \) is a hard-core potential with radius \(a \) (i.e. \(U(r) = \infty \) for \(r < a \) and \(U(r) = 0 \) for \(r \geq a \)), then \(V(\cdot) \) is the probability that a Brownian bridge from \(x - x' \) to \(y - y' \) hits the ball of radius \(a \) centered at the origin.

Is there a simple expression involving special functions? Apparently not.

2.2 Models

We simulate three models for spatial random permutations. The first two have been completely coded; the third is in progress.

- The non-interacting model ([GRU]):

\[
H(x, \pi) = \frac{1}{4\beta} \sum_{i=1}^{N} |x_i - x_{\pi(i)}|^2.
\]
The r_2 interacting model (U07):

$$H(x, \pi) = \frac{1}{4\beta} \sum_{i=1}^{N} |x_i - x_{\pi(i)}|^2 + \alpha r_2(\pi).$$

The interacting model (U07):

$$H(x, \pi) = \frac{1}{4\beta} \sum_{i=1}^{N} |x_i - x_{\pi(i)}|^2 + \sum_{i<j} V(x_i, x_{\pi(i)}, x_j, x_{\pi(j)}).$$

2.3 Conceptualization

- The distance-dependent term $e^{-\frac{1}{4\beta} \sum_{i} \| x - \pi(x) \|^2}$ makes a permutation π with a long jump (i.e. $\pi(x)$ far from x) less probable.
- The $e^{-\alpha r_2(\pi)}$ term discourages permutations with 2-cycles.
- The interacting term discourages permutations with x_i close to x_j and $\pi(x_i)$ close to $\pi(x_j)$, regardless of jump lengths $\|x_i - \pi(x_i)\|$ or $\|x_j - \pi(x_j)\|$. The permutation is favored even less if the two black arrows cross (i.e. larger θ as discussed below).

2.4 Context

The critical temperature T_c for Bose-Einstein condensation is a (mostly unknown) function of scattering length a. Even the sign of the slope of $T_c(a)$ near zero is contested. It is believed that

$$\frac{T_c(a) - T_c(0)}{T_c(0)} = c\rho^{1/4}a + o(\rho^{1/3}a).$$

Currently, it is thought that $c \approx 1.3$. The Monte Carlo simulations described here will permit tighter estimation of c.
2.5 Physics literature

- 1964: Huang: $\frac{\Delta T}{T_c} \sim (a\rho^{1/3})^{3/2}$, increases
- 1971: Fetter & Walecka: $\frac{\Delta T}{T_c}$ decreases
- 1982: Toyoda: $\frac{\Delta T}{T_c}$ decreases
- 1992: Stooft: $\frac{\Delta T}{T_c} = c a\rho^{1/3} + o(a\rho^{1/3}), \quad c > 0$
- 1996: Bijlsma & Stooft: $c = 4.66$
- 1997: Grütter, Ceperley, Laloë: $c = 0.34$
- 1999: Holzmann, Grütter, Laloë: $c = 0.7$: Holzmann, Krauth: $c = 2.3$;
- 1999: Baym et. al.: $c = 2.9$
- 2000: Reppy et. al.: $c = 5.1$
- 2001: Kashurnikov, Prokof'ev, Svistunov: $c = 1.29$
- 2001: Arnold, Moore: $c = 1.32$
- 2004: Kastening: $c = 1.27$
- 2004: Nho, Landau: $c = 1.32$

2.6 Critical temperature

We define $\phi(\alpha)$ to be the probability that the origin is in an infinite cycle. (Here, $\alpha = 1/4\beta$; this figure is from [GRU].) At the critical temperature α, $\phi(\alpha)$ goes to zero. Monte Carlo simulations undertaken in this project will discover how this graph changes in the presence of interactions.
3 The computational project

3.1 Density of sites in infinite cycles

Given a random variable $\theta(\pi)$, compute its expected value. The random variable of interest for this project is the density of sites in cycles of specified length:

$$\rho_{mn}(\pi) = \frac{1}{V} \# \{ i = 1, \ldots, N : m \leq \ell_i(\pi) \leq n \}$$

The usual prescription in probability is

$$E[\rho_{mn}] = \sum_{\pi \in S_N} \rho_{mn}(\pi) P(\pi) = \sum_{\pi \in S_N} \rho_{mn}(\pi) \frac{e^{-H(x,\pi)}}{Y}.$$

The computational burden splits into three main components:

1. Finding H, especially its V term. (For Metropolis, ΔH including ΔV.)
2. Sampling (via Metropolis) from a non-uniform probability distribution on $N!$ permutations for N as big as 50^3.
3. Visualizing the results.

3.2 Tools

- Linux environment, although in principle everything should be portable to other operating systems.
- Optimizing compiler: gcc -O3.
- Build tool: make and automatic makefile generation.
- Performance analyzer: gprof. This shows where a program is spending most of its time.
- Error detector: valgrind. Finds many (but not all!) common errors, e.g. malloc without free.
- Code navigation: ctags. Allows a smart editor (vim, emacs) to jump directly to a subroutine body.
- Graphing utility: xgr. Nice plots in these slides were made in Matlab; quick-and-dirty plots without axis labels were done using xgr.

Sample gprof output:

<table>
<thead>
<tr>
<th>% cumulative</th>
<th>self time</th>
<th>seconds</th>
<th>calls</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.74</td>
<td>1.67</td>
<td>1.67</td>
<td>3729508</td>
<td>pmt_send_x_to_y_n2_delta</td>
</tr>
<tr>
<td>10.08</td>
<td>1.93</td>
<td>0.26</td>
<td>13047273</td>
<td>get_distance_squared</td>
</tr>
<tr>
<td>7.37</td>
<td>2.12</td>
<td>0.19</td>
<td>3617278</td>
<td>get_Delta_H</td>
</tr>
<tr>
<td>5.81</td>
<td>2.27</td>
<td>0.15</td>
<td>3617278</td>
<td>x_to_uniform_y</td>
</tr>
<tr>
<td>4.26</td>
<td>2.38</td>
<td>0.11</td>
<td>3617278</td>
<td>metro_step</td>
</tr>
<tr>
<td>3.49</td>
<td>2.47</td>
<td>0.09</td>
<td>3617278</td>
<td>pmt_send_x_to_y</td>
</tr>
</tbody>
</table>
3.10 2.55 0.08 10545 pmt_get_cycle_counts
0.78 2.57 0.02 10000 vector_accumulate
0.39 2.58 0.01 10546 metro_sweep
0.00 2.58 0.00 10545 get_rho_L_pi
...
4 Visualization

There are three main plots:

1. Plots of the system energy \(H \).
2. Dot plots of the cycles.
3. \(E[\rho_0,k] \) as a function of \(k \) from 0 to \(N \).

4.1 \(H \) plots

Here is a plot of system energy \(H \) for \(L = 10, d = 3 \), no interactions, and \(\beta = 1 \):

This plot is typical for various parameter values; only one such plot is shown here.

- The horizontal axis counts Metropolis sweeps.
- The system was found to be thermalized (as described below) after 559 steps; \(\rho \) values were accumulated over 10,000 sweeps.
- The system energy \(H \) is shown in blue.
- In red is \(H \) smoothed out over a sliding window of 100 sweeps.
- In green is the same smoothed system energy, multiplied by 0 before thermalization and 1 after. Thus, the plot “goes green” when thermalization has occurred.

4.2 Dot plots

A dot plot of the points \(\{x_1, \ldots, x_N\} \) and a permutation \(\pi \) has a dot for each point \(x \), along with a line from \(x \) to \(\pi(x) \) for each point \(x \).

Key points:

- For infinite \(\beta \), the permutation weight \(e^{-\frac{1}{\beta} \sum \|x-\pi(x)\|^2} \) becomes uniform: individual permutation jumps can be arbitrarily long.
• For $\beta = 0$, only the identity permutation is possible.

• For moderate β, long jumps are discouraged. Nonetheless, a long cycle can occur when short jumps chain together.

4.3 Plots for the non-interacting model

Here is $L = 10$, $d = 3$, point positions uniformly distributed on the cube of width 10 but not metropolized, no interactions, varying β:

The $E[\rho]$ plots are much as in the GRU paper.

• The horizontal axis is k/N for k from 0 to N.

• In blue on the vertical axis is $\rho_{0,k}$ for the permutation realized on the last Metropolis sweep.

• In green on the vertical axis is $\rho_{k,k}$ for the permutation realized on the last Metropolis sweep.

• In red on the vertical axis is $E[\rho_{0,k}]$ over 10,000 Metropolis sweeps.

• In yellow on the vertical axis is $E[\rho_{k,k}]$.

Here are $E[\rho]$ plots for the same parameter values as the dot plots:
4.4 Plots for the r_2 model

Here we fix $\beta = 0.5$ and vary α. Note that $\alpha = 0$ recovers the non-interacting case. The dot plots are indistinguishable from the non-interacting case. The $E[\rho_{0,k}]$ plots are similar, so they are superimposed. Blue is $\alpha = 0$, red is $\alpha = 5$, and green is $\alpha = 20$.
4.5 Plots for the interacting model

This is recent work — more are to be obtained.

Here is $\beta = 0.15626$ (just below non-interacting critical temperature), with $\alpha = 0.0$ and $\alpha = 0.1$:

The value $\phi(\beta)$ is the probability that the origin is in an “infinite” cycle. It may be read off the $E[\rho]$ plots as the distance from the upper left corner of the ρ plot to the first leftward lean of the red curve. Critical β_c has $\phi(\beta) = 0$.

<table>
<thead>
<tr>
<th>β</th>
<th>$\phi_0(\beta)$</th>
<th>$\phi_{\alpha=0.0}(\beta)$</th>
<th>$\phi_{\alpha=0.01}(\beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.227273</td>
<td>0.5203</td>
<td>0.5824</td>
<td>0.8081</td>
</tr>
<tr>
<td>0.208333</td>
<td>0.4373</td>
<td>0.5114</td>
<td>0.8057</td>
</tr>
<tr>
<td>0.192308</td>
<td>0.3703</td>
<td>0.4440</td>
<td>0.7835</td>
</tr>
<tr>
<td>0.178571</td>
<td>0.2625</td>
<td>0.3097</td>
<td>0.7868</td>
</tr>
<tr>
<td>0.166667</td>
<td>0.1517</td>
<td>0.2148</td>
<td>0.7769</td>
</tr>
<tr>
<td>0.161290</td>
<td>0.1133</td>
<td>0.1637</td>
<td>0.7663</td>
</tr>
<tr>
<td>0.156250</td>
<td>0.0824</td>
<td>0.1220</td>
<td>0.7693</td>
</tr>
<tr>
<td>0.147059</td>
<td>0.0311</td>
<td>0.0351</td>
<td>0.7645</td>
</tr>
</tbody>
</table>

Conclusion: interactions lower critical β. More simulations are needed.
5 Computation of V

5.1 Brownian bridges

Write \hat{x} and \hat{y} for $x - x'$ and $y - y'$ respectively. Simply generate N_b Brownian bridges from \hat{x} to \hat{y}, with N_p mesh points per bridge, and see what fraction of them intersect the ball of radius a centered at the origin.

- Start with a unit-uniform pseudorandom number generator (RNG).
- Use a Box-Muller transform (cf. Numerical Recipes) to get standard-normal deviates.
- Brownian motion for t from 0 to 1 in steps of Δt: $B_0 = 0$ and $B_{t+1} = B_t + \Delta B$ where ΔB is normal with mean zero and variance Δt.
- Brownian bridge from $\hat{x} = 0$ to $\hat{y} = 0$ for t from 0 to 1: $R_t = B_t - tB_1$.
- Brownian bridge from \hat{x} to \hat{y} for t from 0 to T: $\sqrt{T} R_t + \hat{x} + \frac{t}{T}(\hat{y} - \hat{x})$.

The plot on the left shows, for $d = 1$, $N_b = 20$ bridges with $N_p = 1000$ points per bridge, bridged from $x = -1$ to $y = 2$ ($d = 1$) in time $T = 1$, with R_t plotted against t.

The plot on the right shows, for $d = 3$, the trajectory of a single bridge from $x = (-1,0,0)$ to $y = (2,0,0)$ in time $T = 1$, with the first two components of R_t plotted.

5.2 Software testing

Incrementally test the subroutines for Brownian motion, zero-to-zero bridges, and general bridges.

- Generate N_b bridges of N_p points each, for $d = 1, 2, 3$.
- Select time slices s and t.
- Compute sample means, sample variances, and sample covariances for those time slices and compare against theoretically expected results.
Expected results for Brownian motion:

\[E[B_t] = 0, \quad \text{Var}[B_t] = t, \quad \text{Cov}[B_s, B_t] = s \land t. \]

Expected results for zero-to-zero Brownian bridge \((s < t)\) to simplify notation:

\[E[R_t] = 0, \quad \text{Var}[R_t] = t(1 - t), \quad \text{Cov}[R_s, R_t] = s(1 - t). \]

Expected results for \(\hat{x}\)-to-\(\hat{y}\) Brownian bridge \((s < t)\):

\[E[R_t] = \hat{x} + \frac{t}{T} (\hat{y} - \hat{x}), \quad \text{Var}[R_t] = \frac{t(T - t)}{T}, \quad \text{Cov}[R_s, R_t] = \frac{s(T - t)}{T}. \]

Example with \(T =, \hat{x} = (2, 0, 0), \hat{y} = (-2, 0, 0), N_b = 1000, N_p = 1000, s = 0.004\) (i.e. index 1 of 1000), \(t = 2.0\) (i.e. index 500 of 1000):

<table>
<thead>
<tr>
<th>Actual</th>
<th>E[b(s)]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>E[b(s)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>E[b(s)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>E[b(t)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>E[b(t)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>E[b(t)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

<table>
<thead>
<tr>
<th>Actual</th>
<th>Var[b(s)]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Var[b(s)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>Var[b(s)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual</td>
<td>Var[b(t)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected</td>
<td>Var[b(t)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>Var[b(t)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual</th>
<th>Cov[b(s),b(t)]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Cov[b(s),b(t)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>Cov[b(s),b(t)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3 Bridge results

Experimental results are discouraging. Performance requirements are too stiff for generation of Brownian bridges during Metropolis steps. To help this, one can (1) compute a database of zero-to-zero \(N_b\) Brownian bridges of \(N_p\) points each, and re-use this database for different \(\hat{x}, \hat{y}\). (2) Tabulate \(V\) off-line and interpolate at runtime.

- Dependence on \(N_b\): Increasing \(N_b\) decreases sampling variability of \(V\).
• Dependence on N_p: For small N_p, increasing N_b only decreases sampling variability, but non-zero bias remains (vs. the integral and exact expressions, shown next). For the test case $r_1 = 1, r_2 = 1, \theta = \pi$, one needs N_p on the order of 500,000 before V begins to stabilize.

Interpretation: Note that $\Delta t = T/N_p$. Standard deviation of bridge steps is on the order of $\sqrt{T/N_p}$. For smaller N_p, bridges are too “hoppy” and miss the a-ball at the origin.

5.4 Integral expression for V

Ueltschi and Betz have recently found an approximation which is valid to low order in a:

$$V_2(\hat{x}, \hat{y}) = \frac{a}{\sqrt{8\pi\beta}} e^{\frac{-\|\hat{x} - \hat{y}\|^2}{8\beta}} \int_0^1 \frac{1}{[s(1-s)]^{3/2}} e^{-\frac{\|\hat{x}\|^2}{8\beta s}} e^{-\frac{\|\hat{y}\|^2}{8\beta(1-s)}} ds.$$

where, for notational convenience, we write

$$\hat{x} = x - x', \quad \hat{y} = y - y', \quad V_2(\hat{x}, \hat{y}) = V(x, y, x', y').$$

If $\|\hat{x}\| = \|\hat{y}\|$ then we have the exact expression

$$V_2(\hat{x}, \hat{y}) = \frac{2a}{\|x\|} e^{\frac{-\|\hat{x}\|^2}{8\beta \|x\|^2}} e^{-\frac{\|\hat{y}\|^2}{8\beta \|x\|^2}}.$$

This can be written in terms of the five real variables $r_1 = \|x\|, r_2 = \|y\|, \theta = \cos^{-1}(\langle x, y \rangle / \|x\| \|y\|), \beta$, and a.

5.5 Argument reduction

The potential V depends on d^4 real variables: we have $V(x, y, x', y')$ where $x, x', y, y' \in \mathbb{R}^d$. Since only $x - x'$ and $y - y'$ appear in the formula, we can reduce to d^2 real variables: we have $V_2(\hat{x}, \hat{y})$ as above.

Using rotation and translation invariance of V, we can write down V in terms of $r_1 = \|\hat{x}\|, r_2 = \|\hat{y}\|$, and angle θ. Using the Law of Cosines, we have

$$\|\hat{x} - \hat{y}\|^2 = r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta).$$

In particular, when $r_1 = r_2 = r$, we have

$$\|\hat{x} - \hat{y}\|^2 = 2r^2(1 - \cos(\theta)) = 4r^2 \sin^2(\theta/2).$$

Now V depends only on three real variables. The integral expression is

$$V_2(r_1, r_2, \theta) = \frac{a}{\sqrt{8\pi\beta}} e^{\frac{-r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta)}{8\beta}} \int_0^1 \frac{1}{[s(1-s)]^{3/2}} e^{-\frac{r_1^2}{8\beta s}} e^{-\frac{r_2^2}{8\beta(1-s)}} ds$$

and the exact expression, for $r_1 = r_2 = r$, is

$$V_2(r, r, \theta) = \frac{2a}{r} e^{-\frac{r^2(1 - \sin^2(\theta/2))}{8\beta}}.$$
5.6 Visualization

Here is a surface plot of $V(r, r, \theta)$ for r from 1 to 4, θ from 0 to π, $\beta = 1$, and $a = 0.1$. Note that probability of intersecting the a-sphere decays as r increases, and grows as θ runs from 0° to 180°, as expected.
6 Metropolis-Hastings

6.1 Overview

The Metropolis-Hastings algorithm is a special case of Monte Carlo Markov chain (MCMC). It is best introduced by example: consider the 1D N-point Ising model.

- One has a system with multiple possible configurations. In the Ising model, the configuration space is $\Omega = \{\pm 1\}^N$, i.e. N particles which may be in either an up (filled) or a down (hollow) state.

- A state is described by $\omega = (\omega_1, \ldots, \omega_n)$. The configuration space Ω has 2^N possible configurations.

- The system is endowed with an energy function. For the 1D Ising model, one has

$$H(\omega) = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij} \omega_i \omega_j + \sum_{i=1}^{n} h_i \omega_i.$$

where the S_{ij}’s are interaction terms (non-interacting, nearest neighbor, mean-field, etc.) and the h_i’s are magnetization terms.

- One picks an initial configuration. Typically, there are three choices: (1) Start with all spins down, i.e. $\omega = (-1, \ldots, -1)$. (2) Start with all spins up, i.e. $\omega = (+1, \ldots, +1)$. (3) Start with ω selected from a uniform probability distribution on Ω.

- There is a temperature-related parameter β.

- One selects a site i and decides whether to flip ω_i to $-\omega_i$.

- This decision is made using the Metropolis prescription, namely:
 - One computes the change in energy $\Delta H = H(\omega') - H(\omega)$ which would be obtained if ω were sent to ω' by flipping ω_i.
 - One may compute ΔH by separately computing $H(\omega')$ and $H(\omega)$ and subtracting the two. However, since the only change is at the site i, one may do some ad-hoc algebra to derive an expression for ΔH which is less computationally expensive.
 - One accepts the change with probability

$$P(\text{change}) = \min\{1, e^{-\Delta H}\}$$

This is called a Metropolis step.

- Looping through all n sites from $i = 1$ to $i = n$, performing a Metropolis step at each site i, is called a Metropolis sweep.
If one realizes a random variable $\theta(\pi)$ at each of M sweeps, averaging θ over the M sweeps, one obtains an approximation $\bar{\theta}$ for the expectation $E[\theta]$.

One should first run L Metropolis sweeps of the system, discarding the realizations of the random variable X, before running the M sweeps in which data are accumulated. The L sweeps are called the thermalization phase; the M sweeps are called the accumulation phase.

There is no general method to determine whether the system has thermalized (Kennedy); the underlying concern is the convergence of the Metropolis probability distribution to the stable distribution of its implicit Markov chain.

6.2 Metropolis for the random-cycle model

The random-cycle model is metropolized in a manner analogous to the 1D Ising model:

- The state space is S_N, the permutations on N elements. It has size $N!$.
- The energy function is H as described above.
- The initial configuration is found in one of two ways: (1) Start with an identity permutation. (2) Start with a permutation π selected from a uniform probability distribution on S_N.
- There is a temperature-related parameter β.
- The analogue of conditionally flipping one of N Ising spins is the following. One selects two of the N points x and y and decides whether to send the old permutation π to new permutation π' via

\[
\pi : \begin{pmatrix} x & \pi^{-1}(y) & u & \cdots \\
\downarrow & \downarrow & \downarrow & \cdots \\
\pi(x) & y & \pi(u) & \cdots
\end{pmatrix} \quad \pi' : \begin{pmatrix} x & \pi^{-1}(y) & u & \cdots \\
\downarrow & \downarrow & \downarrow & \cdots \\
y & \pi(x) & \pi(u) & \cdots
\end{pmatrix}
\]

where $\pi'(u) = \pi(u)$ for all $u \neq x, \pi^{-1}(y)$.

- The energy change ΔH may be expensively computed by finding $H(\pi')$ and $H(\pi)$ and subtracting the two, but again, one may do some algebra to take advantage of the fact that most of the terms are identical. This computation is shown below.

- A single Metropolis step selects a site x uniformly from the lattice. The site y is selected uniformly from a Metropolis window: consider only sites y within the radius r such that $e^{-\beta r^2} \approx e^{-10}$, i.e. $r \approx 6\sqrt{3}$. (Selecting y uniformly from the entire lattice gives too many rejected Metropolis steps, harming performance.)

- Looping through all N sites x, performing a Metropolis step at each site i, is a Metropolis sweep.

- The principal random variable of interest is ρ_{mn} as described above.

- Thermalization is detected as follows: smooth out H over a sliding window of 100 Metropolis sweeps. Consider the system thermalized when this smoothed H has reached 30 turning points. Heuristically, this is overly conservative (which is fine). It is better to run too many thermalization sweeps than too few.
6.3 ΔH for the non-interacting model

Recall that

$$H(\pi) = \frac{1}{4\beta} \sum_{u \in \Lambda} \|u - \pi(u)\|^2.$$

For an implementation of a Metropolis algorithm, one wishes to compute the change in potential energy when one sends π to π' via

$\pi : (x \quad \pi^{-1}(y) \quad u \quad \cdots) \quad \pi' : (x \quad \pi^{-1}(y) \quad u \quad \cdots)$

where $\pi'(u) = \pi(u)$ for all $u \neq x, \pi^{-1}(y)$.

We have

$$\Delta H = \frac{\|x - y\|^2 - \|x - \pi(x)\|^2 + \|\pi^{-1}(y) - \pi(x)\|^2 - \|\pi^{-1}(y) - y\|^2}{4\beta}.$$

6.4 ΔH for the r_2 model

The distance-dependent term is the same as in the non-interacting case. Additionally, we need to compute $\Delta r_2 = r_2(\pi') - r_2(\pi)$. There are three cases:

(1) $x \neq y$ and x, y are in different cycles;
(2) $x \neq y$ and x, y are in the same cycle;
(3) $x = y$.

In each case, it is easy to track the change Δr_2, without having to compute $r_2(\pi)$ and $r_2(\pi')$.

6.5 ΔH for the interacting model

The distance-dependent term is again the same as in the non-interacting case. Additionally, we need to compute ΔV. Recall that

$$V(\pi) = \sum_{u < v} V(u, \pi(u), v, \pi(v))$$

where u, v are lattice sites. When we send π to π' as above ($x \mapsto y$ replaces $x \mapsto \pi(x)$ etc.), we have

$$V_{\pi'} - V_{\pi} = \sum_{u < v} V(u, \pi'(u), v, \pi'(v)) - \sum_{u < v} V(u, \pi(u), v, \pi(v)).$$

21
Since $\pi'(u) = \pi(u)$ for all $u \neq x, \pi^{-1}(y)$, and since the interaction potential satisfies the symmetry condition

$$V(x, y, x', y') = V(x', y', x, y),$$

we have simply

$$\Delta V = \sum_{u \neq x, u \neq \pi^{-1}(y)} \left(V(u, \pi(u), x, y) - V(u, \pi(u), x, \pi(x)) \right)$$

$$+ \sum_{u \neq x, u \neq \pi^{-1}(y)} \left(V(u, \pi(u), \pi^{-1}(y), \pi(x)) - V(u, \pi(u), \pi^{-1}(y), y) \right)$$

$$+ V(x, y, \pi^{-1}(y), \pi(x)) - V(x, \pi(x), \pi^{-1}(y), y).$$

7 Conclusions and further directions

7.1 Conclusions

- The r_2 model is easy to simulate. The r_2 term raises the critical temperature. One can quantify this dependence and verify it against the result of Betz and Ueltschi.

- Preliminary results show that in the full-interaction model, the critical temperature is also raised. Software optimization is currently in progress, so that more simulations may be done in a timely manner. Then, $T_c(a)$ may be plotted with confidence.

7.2 Further directions

- The cluster expansion is non-rigorous and needs further justification, in particular for non-lattice point distributions where inter-particle spacing can be small.

- Examine random variables other than ρ_{mn}.

- Use non-Gaussian weights for $d = 2$.

- Place the points not on a cubic lattice but distributed according to a point process; metropolize point positions as well as permutations. The correct point process for Bose-Einstein condensation is not known; it is known not to be Poisson.

- We can greatly increase system size by using parallelization: on a multiprocessor system, partition Λ into subcubes. When x, y are in the same subcube, computation is local; when x is in one subcube and y is in a neighbor, use message-passing.

- See what people come up with as $T_c(a)$ becomes better known Stay tuned for this as well!
A Various energy functions

Here we tabulate, for handy reference, various energy functions used in [GRU] and [U07].

<table>
<thead>
<tr>
<th>Energy Function</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutation energy</td>
<td>$H_\Lambda(\pi) = \sum_{x \in \Lambda}</td>
</tr>
<tr>
<td>Permutation/point probability contribution</td>
<td>$Q(\pi, x) = e^{-\alpha</td>
</tr>
<tr>
<td>Permutation probability numerator</td>
<td>$P_\Lambda^*(\pi) = \prod_{x \in \Lambda} Q(\pi, x)$</td>
</tr>
<tr>
<td></td>
<td>$= \prod_{x \in \Lambda} e^{-\alpha</td>
</tr>
<tr>
<td></td>
<td>$= e^{-\alpha \sum_{x \in \Lambda}</td>
</tr>
<tr>
<td></td>
<td>$= e^{-\alpha H_\Lambda(\pi)}$</td>
</tr>
<tr>
<td>Partition function</td>
<td>$Z_\Lambda = \sum_{\pi \in B_\Lambda} P_\Lambda^*(\pi)$</td>
</tr>
<tr>
<td>Permutation probability</td>
<td>$P_\Lambda(\pi) = \frac{P_\Lambda^*(\pi)}{Z_\Lambda} = \frac{e^{-\alpha H_\Lambda(\pi)}}{Z_\Lambda}$</td>
</tr>
<tr>
<td>Probability the origin is in a cycle of length k</td>
<td>$P_\Lambda(\ell_0 = k) = \sum_{\pi \in B_\Lambda: \ell_0 = k} P_\Lambda(\pi)$</td>
</tr>
<tr>
<td></td>
<td>$P(\ell_0 = k) = \lim_{\Lambda \to \mathbb{Z}^d} P_\Lambda(\ell_0 = k)$</td>
</tr>
<tr>
<td>Probability the origin is in an infinite cycle</td>
<td>$\phi(\alpha) = 1 - \sum_{k=1}^{\infty} P(\ell_0 = k)$</td>
</tr>
<tr>
<td>Thermodynamic potential</td>
<td>$f_\Lambda(\alpha) = \frac{\log(Z_\Lambda)}{</td>
</tr>
<tr>
<td></td>
<td>$f(\alpha) = \lim_{\Lambda \to \mathbb{Z}^d} f_\Lambda(\alpha)$</td>
</tr>
</tbody>
</table>
B An overview of the Metropolis-Hastings algorithm

Here we summarize the Metropolis-Hastings algorithm for handy reference, with no attempt to prove correctness. More thorough discussions of the algorithm may be found in (for example) GS, Hua, Law, and Mac.

Metropolis-Hastings is perhaps best introduced by example.

- One has a system with multiple possible configurations. Specifically, one may think of the one-dimensional Ising model. This is \(\Omega = \{ \pm 1 \}^n \), i.e. \(n \) particles which may be in either an up or a down state. A state is described by
 \[\omega = (\omega_1, \ldots, \omega_n). \]
 Here, the state space \(\Omega \) has \(2^n \) possible configurations.

- The system is endowed with an energy function. For the 1D Ising model, one has
 \[E(\omega) = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{ij} \omega_i \omega_j + \sum_{i=1}^{n} h_i \omega_i, \]
 where the \(S_{ij} \)'s are interaction terms and the \(h_i \)'s are magnetization terms.

- One picks an initial configuration. Typically, there are three choices: (1) Start with all spins down, i.e. \(\omega = (-1, \ldots, -1) \). (2) Start with all spins up, i.e. \(\omega = (+1, \ldots, +1) \). (3) Start with \(\omega \) selected from a uniform probability distribution on \(\Omega \).

- There is a system temperature \(\beta \).

- One selects a site \(i \) and decides whether to flip \(\omega_i \) to \(-\omega_i\). This decision is made using the Metropolis prescription, namely:
 - One computes the change in energy \(\Delta E = E(\omega') - E(\omega) \) which would be obtained if \(\omega \) were sent to \(\omega' \) by flipping \(\omega_i \).
 - One may compute \(\Delta E \) by separately computing \(E(\omega') \) and \(E(\omega) \) and subtracting the two. However, since the only change is at the site \(i \), one may do some algebra to derive an expression for \(\Delta E \) which is less computationally expensive.
 - One accepts the change with probability
 \[\min\{1, e^{-\beta \Delta E}\}. \]
 This is called a Metropolis step.

- Looping through all \(n \) sites from \(i = 1 \) to \(i = n \), performing a Metropolis step at each site \(i \), is called a Metropolis sweep.

- If one realizes a random variable \(X(\omega) \) at each of \(M \) sweeps, averaging \(X \) over the \(M \) sweeps, one obtains an approximation \(\overline{X} \) for the expectation \(E[X] \).

- One should first run \(L \) Metropolis sweeps of the system, discarding the realizations of the random variable \(X \), before running the \(M \) sweeps in which data are accumulated. The \(L \) sweeps are called the thermalization phase; the \(M \) sweeps are called the accumulation phase. There is no general method to determine whether the system has thermalized (Ken); the underlying concern is the convergence of the Metropolis probability distribution to the stable distribution of its implicit Markov chain. Techniques for thermalization for the random-cycle model, which is the subject of this paper, are presented in section 6.
References

[BY] Burdzy, M. and Yor, M. Personal communication.

[Ken] Kennedy, T. Personal communication.

Index

A
accumulation phase .. 24

C
configurations .. 24

E
energy function .. 24

I
initial configuration ... 24
Ising model ... 24

M
Metropolis prescription ... 24
Metropolis step ... 24
Metropolis sweep .. 24

S
site ... 24
step .. 19 20 24
sweep ... 19 20 24
system .. 24

T
temperature ... 24
thermalization phase ... 24