Markov Jabberwocky: fesh, excenture, and the like

John Kerl

Department of Mathematics, University of Arizona

August 26, 2009

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 1/18

Lewis Carroll's Jabberwocky / le Jaseroque / der Jammerwoch

"Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the mome raths outgrabe.

< Garde-toi du Jaseroque, mon fils!

La gueule qui mord; la griffe qui prend!
Garde-toi de 'oiseau Jube, évite

Le frumieux Band-a-prend!>

Er griff sein vorpals Schwertchen zu,
Er suchte lang das manchsam’ Ding;

Dann, stehend unterm Tumtum Baum,
Er an-zu-denken-fing.

Many of the above words do not belong to their respective languages — yet look like they
could, or should. It seems that each language has its own periphery of almost-words. Can
we somehow capture a way to generate words which look Englishy, Frenchish, and so on?

It turns out Markov chains do a pretty good job of it. Let's see how it works.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 2/18

|
Probability spaces

A probability space™ is a set) of possible outcomes™ X, along with a probability
measure P on events (sets of outcomes). Example: Q = {1,2,3,4,5,6}, the results of
the toss of a (fair) die.

What would you want P({1}) to be? What about P({2,3,4,5,6})? And of course, we
want P({1,2}) = P({1}) + P({2}).

The axioms for a probability measure encode that intuition. For all A, B C Q:
e P(A)€[0,1] forall ACQ

e P(Q) =1
e P(AUB) = P(A)+ P(B) if A and B are disjoint.

Any function P from subsets of €2 to [0, 1] satisfying these properties is a probability
measure. Connecting that to real-world “randomness” is an application of the theory.

(*) Here’s the fine print: these definitions work if €2 is finite or countably infinite. If {2 is uncountable, then we need to restrict our attention to a o-field

F of P-measurable subsets of 2. For full information, you can take Math 563.

(**) Here's more fine print: I'm taking my random variables X to be the identity function on outcomes w.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 3/18

Independence of events

Take a pair of fair coins. Let Q = {HH,HT,TH,TT}. What's the probability that the
first or second coin lands heads-up? What do you think P(H H) ought to be?

H T

Hf| 1/4 | 1/4 A = 1st is heads

T 1/4 | 1/4 | B = 2nd is heads

Now suppose the ¢ are welded together — you can only get two heads, or two tails:

oi
now, P(HH) = 1 #

ns
1
2

.1
5

Hy 1/2 0 A = 1st is heads

Tl O 1/2 | B = 2nd is heads

We say that events A and B are independent if P(AN B) = P(A)P(B).

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like

August 26, 2009 4/18

|
PMFs and conditional probability

A list of all outcomes X and their respective probabilities is a probability mass function
or PMF. This is the function P(X = z) for each possible outcome x.

1/6 (1/6 | 1/6 | 1/6 | 1/6 | 1/6

Now let 2 be the people in a room such as this one. If 9 of 20 are female, and if 3 of
those 9 are also left-handed, what's the probability that a randomly-selected female is
left-handed? We need to scale the fraction of left-handed females by the fraction of
females, to get 1/3.

F| 3/20(6/20

M| 2/209/20

We say
_ P(L,F)
P(L|F)= PF)
This is the conditional probability of being left-handed given being female.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 5/ 18

Die-tipping and stochastic processes

Repeated die rolls are independent. But suppose instead that you first roll the die, then
tip it one edge at a time. Pips on opposite faces sum to 7, so if you roll a 1, then you
have a 1/4 probability of tipping to 2, 3,4, or 5 and zero probability of tipping to 1 or 6.

A stochastic process is a sequence X; of outcomes, indexed (for us) by the integers
t=1,2,3,...: For example, the result of a sequence of coin flips, or die rolls, or die tips.

The probability space is 2 x x ... and the probability measure is specified by
P(X1 =z1, X2 = z2,...). Using the conditional formula we can always split that up
into a sequencing of outcomes:
P(Xl :l‘17X2 :l‘z,...,Xn :In) :P(Xl :l‘l)
“P(Xo =2 | X1 =m1)
- P(Xs=uz3| X1 =1, X2 = x2)
P(Xn = Tn | Xl =1, 7Xn—1 :l‘n—l)-

Intuition: How likely to start in any given state? Then, given all the history up to then,
how likely to move to the next state?

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 6 /18

Markov matrices

A Markov process (or Markov chain if the state space 2 is finite) is one such that the
P(Xn =Tn | X1 = xl,Xg = T2,.. -,anl = xnfl) :P(Xn = Tn | anl = xnfl).

If probability of moving from one state to another depends only on the previous outcome,
and on nothing farther into the past, then the process is Markov. Now we have

P(X1 :l'l,...,anxn) :P(Xl :l'l)
-P(XQZIQ|X1:1‘1)----P(Xn:1’n|Xn_1:1‘n_1).

We have the initial distribution for the first state, then transition probabilities for
subsequent states.

Die-tipping is a Markov chain: your chances of tipping from 1 to 2,3,4,5 are all 1/4,
regardless of how the die got to have a 1 on top. We can make a transition matrix. The
rows index the from-state; the columns index the to-state:
W@ B @ 6 ©
(1) 0 1/4 1/4 1/4 1/4 0
(2) 1/4 0 1/4 1/4 0 1/4
(3) 1/4 1/4 0 0 1/4 1/4
(4) 1/4 1/4 0 0 1/4 1/4
(5) 1/4 0 1/4 1/4 0 1/4
6) 0 1/4 1/4 1/4 1/4 0

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 7/18

Markov matrices, continued

What's special about Markov chains? (1) Mathematically, we have matrices and all the
powerful machinery of eigenvalues, invariant subspaces, etc. If it's reasonable to use a
Markov model, we would want to. (2) In applications, Markov models are often
reasonable.

Each row of a Markov matrix is a conditional PMF: P(X2 = z; | X1 = ;).

The key to making linear algebra out of this setup is the following law of total probability:

P(Xs=a;) = P(Xi = X2 = 1)
= ZP(Xl = l'Z)P(XQ =Xj; | X1 = l‘z)

PMFs are row vectors. The PMF of X5 is the PMF of X; times the Markov matrix M.
The PMF of Xg is the PMF of X; times M7, and so on.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 8 /18

- |
Back to mwotrds! Phase 1 of 2: read the dictionary file

Word lists (about a hundred thousand words each) were found on the Internet: English,
French, Spanish, German. The state space is 2 x 2 X ... where is all the letters found
in the dictionary file: a-z, perhaps 6, B, etc.

After experimenting with different setups, | settled on a probability model which is
hierarchical in word length:

e | have P(word length = ¢).

o Letter 1: P(X1 =1 |¥¢). Then P(Xy =y | Xp—1 = xp—1,£) for k=2,... L.

e | use separate Markov matrices (“non-homogeneous Markov chains”) for each word
length and each letter position for that word length. This is a lot of data! But it
makes sure we don't end words with gr, etc.

PMFs are easy to populate. Example: dictionary is apple, bat, bet, cat, cog, dog.
Histogram:

0 0 5 0 1
(=1 (=2 (=3 (=4 (=5
Then just normalize by the sum to get a PMF for word lengths:

{ 0 0 5/6 0 1/6]
(t=1) (t=2) (t=3) (t=4) (=5)

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 9/18

Example

Dictionary is apple, bat, bet, cat, cog, dog. Word-length PMF, as above:
0 0 5/6 0 1/6
(=1 (=2 (=3 ({=4) (=5

Letter-1 PMF for three-letter words:

{ 2/5 2/5 1/5 }

b (o (@
Letter-1-to-letter-2 transition matrix for three-letter words:
(a) (e) (o)
v 1/2 1/2 0

() 1/2 0 1/2
@ 0 0 1

Letter-2-to-letter-3 transition matrix for three-letter words:

®) (9)
(@) 1 0
e) 1 0
(o) 0 1
Markov Jabberwocky: fesh, excenture, and the like

August 26, 2009 10 / 18

I ——
Phase 2 of 2: generate the words using CDF sampling

How can we sample from a non-uniform probability distribution? Think of the PMF as a
dartboard. We throw a uniformly wild dart. Outcomes with bigger P should take up
bigger area on the dartboard.

Theorem: This works. Technically:

e We write a cumulative distribution function, or CDF. Whereas the PMF is
f(x) = P(X =z), the CDF is F(z) = P(X < z). (Put some ordering on the
outcomes.)

e Let U (the dart) be uniformly distributed on [0, 1].

e Then F~*(U) (appropriately interpreted) has the distribution we want. (See my
September 2007 grad talk Is 2 a random number? for full details.)

Example: PMF for letter 1 of three-letter words is

{ 04 04 02 }
() (o) (d)
CDF for letter 1 of three-letter words is
{ 04 08 1.0 }
() (o) (d)
If U comes out to be 0.6329, then | pick letter 1 to be ¢. If U comes out to be 0.1784,

then | pick letter 1 to be b. Etc. | also make a CDF for each row of each Markov matrix.
Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 11 /18

Word generation, continued

To generate a word, given the Markov-chain data obtained from a specified dictionary file:

Use CDF sampling to pick a word length ¢ from the word-length distribution.
e Use the letter-1 CDF for word length /¢ to pick a first letter.

Go to that letter’s row in the letter-1-to-letter-2 transition matrix for word length .
Sample that CDF to pick letter 2.

e Keep going until the (th letter.

e Print the word out.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 12 /18

Three-letter memory

The non-Markov part of the story: Using Markov chains, as described here, | got decent
words, but not always. Real-word correlations go more than one letter deep.

Example: Using a German dictionary, my program generated the 5-letter word bller. This
made sense: There are b / _ _ _ words in German, e.g. bleib. There are _ /| _ _ words in
German, e.g. alles. But my Markov model only looks at correlations between adjacent
letters, and thus it didn't detect that b/l _ _ never happens in German.

For revision two of the project, | did all the steps described in the previous slides, but now
with the following data:

| have P(word length = ¢) as before.

e For first letters, P(X1 = z1 | £).

For second letters, P(X2 = z2 | X1 = 21, £).

For the rest, P(Xy =z | Xk—2 = Tr—2, Xk—1 = T—1,).

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 13 /18

|
Results with a tiny word list
Dictionary is bake, balm, bare, cake, calm, care, cart, case, cave. Here are all possible

outputs (all of Q x Q x ...) using two-letter and three-letter memory, respectively. Words
appearing in the output but not in the input word list are marked with .

| w P(w) | w P(w) |
bake 0.0740741 | bake 0.1111111
balm 0.0740741 | balm 0.1111111
bare 0.0740741 | bare 0.0740741
bart* 0.0370370 | bart* 0.0370370
base* 0.0370370 | cake 0.1111111
bave* 0.0370370 | cal/m 0.1111111
cake 0.1481481 | care 0.1481481
calm 0.1481481 | cart 0.0740741
care 0.1481481 | case 0.1111111
cart 0.0740741 | cave 0.1111111
case 0.0740741
cave 0.0740741

When larger word lists are used, €2 is far larger than the input word list: i.e. far more
mimsy and mome than were and the.

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 14 /18

Results with real word lists

For full-size word lists, | don't try to enumerate all possible outputs — | just generate
100 or so at a time.

When | feed word lists from different languages into the same computer program, | get
different outputs. Hopefully, you can tell which is which.

churency kingling supprotophated doconic linictoxly stewalorties murine hawkinesses

texueux roseras placites exhumérent orileffé cinquetassions laissiez regre-néses
sauceptant montrenards résaismez enjupillimes ratit fausive

perénimo boldn sanfija morricete esmotorrar bisfato filamberecer estempoli micleta
zarifero senestrosia desalificapio

Béservolle techtausfalle Nah wohlassee verschiitzen Probinus traBcher Postenpland
einpriickt BuBrfere héhegendeter

occlamo domitor nestum inhibeo prohisus equino eribro obvolla exteptor exibro abduco
loci equa occasco

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 15 /18

- |
Matching

Aramian Wasielak's idea: run a word (real or not) through the Markov-chain data for all
tabulated languages, computing the probability of the word:

P(Word lengchZ)-P(Xlle|€)~P(X2:x2|X1 :xl,f)---

(last four columns.) Then, for each word, normalize those numbers to get a score
between zero and one (first four columns).

Word En score Frscore Sp score De score En P Fr P Sp P De P
cat 1.000 0.000 0.000 0.000 5.5- 100 0 0 0
baguette 0.015 0.985 0.000 0.000 47109 3.1-10 7 0

wurst 0.180 0.000 0.000 0.820 1.2.107 0 0 5.5 107
palapa 0.014 0.056 0.930 0.000 9.0-10_9 3.6-10 6.0-10_ 7 0

fesh 1.000 0.000 0.000 0.000 9.3-10 7 0 0 0
location 0.719 0.098 0.000 0.181 1.9-.10—7 2.6-10 0 ~10- 8
Xyzzy 0.000 0.000 0.000 0.000 0 0 0 0
brillig 0.000 0.000 0.000 1.000 0 0 0 109
slithy 1.000 0.000 0.000 0.000 2.1-10 7 0 0 0
toves 0.000 0.000 0.000 0.000 0 0 0 0
Sutgrabe 0.000 0.000 0.000 0.000 0 0 0 0
frumieux 0.067 0.895 0.000 0.037 4.5-.10" 11 6.0 1010 0 10— 11
griff 0.742 0.139 0.000 0.118 7.4-10 7 1.3-10~ 7 0 10— 7
vorpal 1.000 0.000 0.000 0.000 1.3-10 9 0 0 0
muggle 1.000 0.000 0.000 0.000 5.10 0 0 0 0
expecto 0.000 0.000 1.000 0.000 0 0 8.1-10 7 0
patronum 1.000 0.000 0.000 0.000 0-10—10 0 0 0

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like

August 26, 2009

16 / 18

|
Other possibilities

In this project, my goal was to construct words out of letters, using language-specific
empirical knowledge of transition probabilities from one letter to the next.

One can do something similar, constructing sentences out of (true) words, using
language-specific empirical knowledge of transition probabilities from one word to the
next. Google for Garkov and Rooter. See also Cam MclLeman's page on language/math
experiments.

Shane Passon’s idea: Using more languages (e.g. German, Dutch, Swedish; French,
Spanish, Catalan, Italian; Polish, Czech, Russian; etc.) can we adapt the scoring
mechanism to measure relatedness of languages?

All the machinery here works on letters — specifically on written language. Better results
might be obtained by using not letters, but units such as e, n, ou, gh. This requires a
language expert to decide what the pieces are. Or does it? Can we automate detection
of these digraphs, trigraphs, and so on?

When we invent nonsense sayings, | don’t think there are little Markov chains running in
our heads. What's so satisfying about Carroll's Long time the manxome foe he sought
., and where does it really come from?

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 17 /18

Vielen Dank fiir lhre Aufmerksamkeit!
Je vous remercie de votre attention!
Gracias por su atencién!

Thank you for attending!

J. Kerl (Arizona) Markov Jabberwocky: fesh, excenture, and the like August 26, 2009 18 / 18

