Math 511a - Test 2 Practice Practice Questions for Rings

- 1. Suppose R is a UFD and $r \in R^*$. Show that there are only finitely many $s \in R$ such that $(s) \geq (r)$.
- 2. If F is a field and $f(x), g(x) \in F[x]$, whose that the least common multiple lcm(f(x), g(x)) is a generator for the ideal $(f(x)) \cap (g(x))$.
- 3. Let $R = M_2(\mathbb{Z})$, the ring of 2×2 matrices over \mathbb{Z} , and $M = M_2(2\mathbb{Z})$. Show that M is a maximal ideal in R, and that $R/M \cong M_2(\mathbb{Z}_2)$.
- 4. Suppose R and S are nontrivial rings with 1 and $\phi: R \to S$ is a homomorphism such that $\phi(1_R) \neq 0$. IF $\phi(1_R) \neq 1_S$, show that $\phi(1_R)$ is a zero-divisor in S. Conclude that if S is an integral domain, then $\phi(1_R) = 1_S$.
- 5. Suppose R is a finite commutative ring with 1. Show that every prime ideal of R is maximal.
- 6. Suppose that $S = \mathbb{Q}[x]$ as an additive group, but that the usual multiplication of polynomials is replaced by composition, i.e. $(f \circ g)(x) = f(g(x))$. Show that S is not a ring.
- 7. If I is an ideal in a ring R, show that $A(I) = \{r \in R : rI = 0\}$ is an indeal in R.
- 8. If R is a commutative ring with 1 and I is an ideal in R define $\sqrt{I} = \{r \in R : r^k \in I, \text{ some } k \in \mathbb{N}\}.$
 - (a) Show that \sqrt{I} is an ideal and that $I \subseteq \sqrt{I}$.
 - (b) If P is a prime ideal in R with $I \subseteq P$ show that $\sqrt{I} \subseteq P$.
 - (c) If $R = \mathbb{Z}$ and I = (72) calculate \sqrt{I} .
- 9. True or False (proof or counterexample)
 - (a) If F and K are fields, R is a ring, and $F \subseteq R \subseteq K$, then R is a field.
 - (b) If R is a Euclidean domain and S is a nonzero subring then S is Euclidean.
 - (c) There is a ring R with 10 elements such that if $a, b \in R$, $a \neq 0$, $b \neq 0$, then $ab \neq 0$.
 - (d) Every UFD is a PID.
 - (e) If $r \in R$ (commutative ring with 1) then the set $I = \{r \in R : \exists x \neq 0 = rx\}$ is an ideal.

- (f) If $r \in R$ (comm w/1) then $r = \pm 1$.
- (g) If J is a prime ideal then R/J is a field.
- (h) $\mathbb{C}[x]/(f(x) = x^3 x) \cong \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$
- 10. Let R be a PID. Let

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

be an increasing sequence of ideals in R. Prove that the sequence is everntually constant, i.e. for some n, $I_n = I_{n+1} = I_{n+2} = \cdots$

- 11. Give an example of an irreducible polynomial of degree 100 in $\mathbb{C}[x,y]$.
 - (a) Give an example of an ideal in a commutative ring which is prime but not maximal.
 - (b) Prove that if $f: R \to S$ is a homomorphism of commutative rings and $I \subseteq S$ is a prime ideal, then $f^{-1}(I)$ is prime.
- 12. Show that every nonzero prime ideal in the ring Z[i] of Gaussian integers is maximal.
- 13. Suppose R is an ID (with 1) having only finitely many ideals. Prove that R is a field. What if R is just a commutative ring, not a domain?
- 14. Give an example of a prime ideal in $\mathbb{C}[x,y]$. Find one that is prime but not maximal. Give one that is not principal.
- 15. Let R be a commutative ring. Recall that $r \in R$ is nilpotent if $r^n = 0$ for some n > 0 and that the set of all nilpotent elements in R is an ideal. Show that R/N has no nonzero nilpotent elements.
- 16. Show that the field \mathbb{C} of complex numbers is isomorphic with the subring

$$\left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
 of $M_2(\mathbb{R})$.

- 17. Let R be the addivite abelian $\mathbb{Z} \oplus \mathbb{Z}$ and let R' be the ring $\operatorname{End}(A)$, with multiplication being composition of functions. Show by example that R' is not commutative.
- 18. Assume that gcd(m,n) = 1. Prove that $\mathbb{Z}/(mn)\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/m\mathbb{Z}$.
- 19. Let R be a commutative ring, and let $M \subseteq R$ be an ideal. Prove that R is a local ring with maximal ideal M if and only if every element of R not in M is invertible. (Recall that a ring is local if it has a unique maximal ideal).