Linear Algebra Problems Solutions 1

1. Let A^* be the conjugate transpose of the complex matrix A, i.e., $A^* = (\bar{A})^t$. A is said to be Hermitian if $A^* = A$, real symmetric if A is real and $A^t = A$, skew-Hermitian if $A^* = -A$ and normal if $A^*A = AA^*$.

Find the dimension and a basis for each of the following vector spaces.

- (a) $M_n(\mathbb{C})$, $n \times n$ complex matrices, over \mathbb{C} .
- (b) $M_n(\mathbb{C})$ over \mathbb{R}
- (c) $H_n(\mathbb{C})$, $n \times n$ Hermitian matrices, over \mathbb{R}
- (d) $H_n(\mathbb{R})$, $n \times n$ real symmetric matrices, over \mathbb{R}
- (e) $S_n(\mathbb{C})$, $n \times n$ skew-Hermitian matrices, over \mathbb{R}
- (f) The space consisting of all real polynomials of A over \mathbb{R} , where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}, \, \omega = \frac{-1 + \sqrt{3}n}{2}$$

 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}, \ \omega = \frac{-1 + \sqrt{3}i}{2}$ Is $H_n(\mathbb{C})$ a vector space over \mathbb{C} ? IS the set of $n \times n$ normal matrices a subspace of $M_n(\mathbb{C})$? Show that $M_n(\mathbb{C}) = H_n(\mathbb{C}) + S_n(\mathbb{C})$, i.e., any $n \times n$ matrix is a sum of Hermitian matrix and a skew-Hermitian matrix.

ANSWER: Note E_{ij} is the $n \times n$ matrix with 1 in the ij position and 0 elsewhere.

- (a) E_{st} , $1 \le s, t \le n$ for a basis. dim = n^2 .
- (b) E_{st} , iE_{st} , $1 \le s, t \le n$ form a basis. Dimension is $2n^2$.
- (c) $E_{st} + E_{ts}$, $s \le t$ and $i(E_{st} E_{ts})$, s < t, for a basis with dimension n^2 .
- (d) $E_{st} + E_{ts}$, $s \le t$, form a basis. Dimension is $\frac{n(n+1)}{2}$
- (e) $E_{st} E_{ts}$, s < t and $i(E_{st} + E_{st})$, $s \le t$, form a basis. Dimension is n^2 . (f) $\{I, A, A^2\}$ is a basis. Dimension is 3. $H_n(\mathbb{C})$ and the set of $x \in \mathbb{C}$
- $H_n(\mathbb{C})$ and the set of normal matrices are not vector spaces. To see that

$$M_n\left(\mathbb{C}\right) = H_n\left(C\right) + S_n\left(\mathbb{C}\right), \text{ write}$$

$$A = \frac{A+A^*}{2} + \frac{A-A^*}{2}$$

- 2. Find the space of matrices commuting with
- (a) $A = I_n$

(b)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a \neq b$$

(a)
$$A = I_n$$

(b) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
(c) $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a \neq b$
(d) $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
(a) All $n \times n$ matrices

(e) All $n \times n$ matrices

ANSWER: (a) All $n \times n$ matrices

(b) All the matrices of the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$

- (c) All the matrices of form $\begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$ (d) All the matrices of form $\begin{pmatrix} a & b & c & d \\ 0 & a & b & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$
- (e) All the $n \times n$ scalar matrices cI
- 3. True or False. If true, what is the dimension? Basis?
- (a) $\{(x,y): x^2 + y^2 = 0, x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (b) $\{(x,y): x^2 + y^2 = 0, x, y \in \mathbb{C}\}$ is a subspace of \mathbb{C}^2 . (c) $\{(x,y): x^2 y^2 = 0, x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (d) $\{(x,y): x-y=0, x,y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (e) $\{(x,y): x-y=1, x,y\in\mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (f) $\{p(x): p(x) \in \mathbb{P}[x] \text{ has degree 3}\}\$ is a subspace of $\mathbb{P}[x]$.
- (g) $\{p(x): p(0) = 0, p(x) \in \mathbb{P}[x]\}\$ is a subspace of $\mathbb{P}[x]$
- (h) $\{p(x): 2p(0) = p(1)\}\$ is a subspace of $\mathbb{P}[x]$.
- (i) $\{p(x): p(x) \geq 0, p(x) \in \mathbb{P}[x]\}\$ is a subspace of $\mathbb{P}[x]$.
- ANSWER: (a) True (b) False (c) False (d) True (e) False
- (f) False (g) True (h) True (i) False.
 - 4. Show that $M_2(\mathbb{R}) = W_1 \oplus W_2$, where

$$W_1 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
$$W_2 = \left\{ \begin{pmatrix} c & d \\ d & -c \end{pmatrix} : c, d \in \mathbb{R} \right\}.$$

4. Show that
$$M_2(\mathbb{R}) = W_1 \oplus W_2$$
, where
$$W_1 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

$$W_2 = \left\{ \begin{pmatrix} c & d \\ d & -c \end{pmatrix} : c, d \in \mathbb{R} \right\}.$$
ANSWER: One can see that
$$\begin{pmatrix} x & y \\ u & v \end{pmatrix} = \begin{pmatrix} \frac{x+v}{2} & \frac{y-u}{2} \\ -\frac{y-u}{2} & \frac{x+v}{2} \end{pmatrix} + \begin{pmatrix} \frac{x-v}{2} & \frac{y+u}{2} \\ \frac{y+u}{2} & -\frac{x-v}{2} \end{pmatrix} \text{ and }$$

$$W_1 \cap W_2 = \{0\}$$

- 5. Let A be an $n \times n$ real matrix.
- (a) Show that if $A^t = -A$ and n is odd, then |A| = 0.
- (b) Show that if $A^2 + I = 0$, then n must be even.
- (c) Does (b) remain true for complex matrices?
- ANSWER: (a) $|A| = |A^t| = |-A| = (-1)^n |A| = -|A|$ if n is odd.
- (b) $|A|^2 = |A^2| = |-I| = (-1)^n$. If n is odd, then $|A|^2 = -1$. This is impossible when A is a real matrix.
 - (c) No.
- 6. Introduce the correspondence between complex numbers and real matrices:

$$z = x + iy \tilde{\ } Z = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \in M_2\left(\mathbb{R}\right),$$

and define for each pair of complex numbers u and v:

$$q = (u, v) \cong C(q) = \begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix} \in M_2(\mathbb{C})$$

- (a) Show that $\bar{z}^{\sim}Z^t$.
- (b) Show that ZW = WZ
- (c) Show that $z \, Z$ and $w \, W$ imply zw + ZW.
- (d) Find Z^n , where $z = r(\cos \theta + i \sin \theta)$.
- (e) What is the matrix corresponding to i?
- (f) Show that $|C(q)| \ge 0$. Find $C(q)^{-1}$ when $|u|^2 + |v|^2 = 1$.
- (g) Replace each entry of C(q) with the corresponding 2×2 real matrix to the entry to get

$$\mathcal{R}\left(q\right) = \begin{pmatrix} U & V \\ -V^{t} & U^{t} \end{pmatrix} \in M_{4}\left(.\right)$$

Then $|\mathcal{R}(q)| \geq 0$.

(h) Show that $\mathcal{R}(q)$ is similar to a matrix of form

$$\begin{pmatrix} U & X \\ -X & U \end{pmatrix}$$

(i) Show that $\mathcal{R}(q)$ is singular if and only if $\mathcal{C}(q)$ is singular if and only if u = v = 0.

ANSWER: It is routine to verify (a), (b), and (c).

(d) Since $z^n = r^n (\cos n\theta + \sin n\theta)$,

(d) Since
$$z^n = r^n \left(\cos n\theta + \sin n\theta \right)$$

$$Z^n = r^n \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}$$
(e) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

(f)
$$|\mathcal{C}(q)| = |u|^2 + |v|^2 \ge 0$$
 and $\mathcal{C}(q)^{-1} = \begin{pmatrix} \bar{u} & -v \\ \bar{v} & u \end{pmatrix}$, when $|\mathcal{C}(q)| = 1$.

(g) Write $u = u_1 + iu_2$ and $v = v_1 + iv_2$ to get $\mathcal{R}(q)$. Note that U and $-V^t$ commute. By computation

$$|\mathcal{R}(q)| = |UU^t + V^t V| = \left(\left|u^2\right| + \left|v\right|^2\right)^2 \ge 0$$
(h) Exchange the last two rows and columns of $\mathcal{R}(q)$.

- (i) From (g), $|\mathcal{R}(q)| = 0 \iff |\mathcal{C}(q)| = 0 \iff u = v = 0$
- 7. True or false
- (a) For any $m \times n$ matrix A with rank r, there exists invertible $m \times m$ and $n \times n$ matrices P and Q such that

$$A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q.$$

(b) For any $n \times n$ matrix A with rank r, there exists an invertible $n \times n$

matrix
$$P$$
 such that
$$A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} P^{-1}.$$

(c) If A is a real matrix and A^{-1} exists over \mathbb{C} , then A^{-1} is also a real matrix.

(d) If
$$(A^*)^2 = A^2$$
, then $A^* = A$ or $A^* = -A$.

- (e) If rank $A = \operatorname{rank} B$, then rank $(A^2) = \operatorname{rank} (B^2)$
- (f) $\operatorname{rank}(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$
- (g) $\operatorname{rank}(A B) \leq \operatorname{rank}(A) \operatorname{rank}(B)$
- (h) Since (1,i) and (i,-1) are linearly independent over \mathbb{R} , the matrix $\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ is invertible.

ANSWER: (a)True (b)False (c) True (d)False (e)False (f)True (g)False (h)False

8. Suppose that A and B are both $m \times n$ matrices. Show that Ax = 0 and Bx = 0 have the same solution space if and only if there exists an invertible matrix C such that A = CB. Use this fact to show that if rank $(A^2) = \operatorname{rank}(A)$, then there exists an invertible matrix D such that $A^2 = DA$.

ANSWER: it is sufficient to show that there is an invertible matrix C such that A = CB when Ax = 0 and Bx = 0 have the same solution space.

First notice that A and B must have the same rank. Let P_1 and P_2 be the

$$P_1A = \begin{pmatrix} A_1 \\ Q_1A_1 \end{pmatrix}$$
 and $P_2B = \begin{pmatrix} B_1 \\ Q_2B_1 \end{pmatrix}$,

permutation matrices such that $P_1A = \begin{pmatrix} A_1 \\ Q_1A_1 \end{pmatrix} \text{ and } P_2B = \begin{pmatrix} B_1 \\ Q_2B_1 \end{pmatrix},$ where A_1 and B_1 are respectively $r \times r$ submatrices of A and B with rank r, and Q_1 and Q_2 are some matrices of size $(m-r) \times n$. Ax = 0 and Bx = 0have the same solution space if and only if $A_1x = 0$ and $B_1x = 0$ have the same solution space. We observe that

$$\operatorname{rank}\left[\left(\begin{array}{c} A_1 \\ B_1 \end{array}\right)\right] = \operatorname{rank}\left(B_1\right),$$

rank $\begin{bmatrix} A_1 \\ B_1 \end{bmatrix}$ = rank (B_1) , and thus know that there is an $r \times r$ invertible matrix C_1 such that $A_1 = 1$ C_1B_1 . Thus

$$P_1A = \left(\begin{array}{c} A_1 \\ Q_1A_1 \end{array}\right) = \left(\begin{matrix} C_1 & 0 \\ Q_1C_1 & I_{m-r} \end{matrix}\right) \left(\begin{array}{c} B_1 \\ Q_2B_1 \end{array}\right) = C_2P_2B$$

where
$$C_2 = \begin{pmatrix} C_1 & 0 \\ Q_1C_1 - Q_2 & I_{m-r} \end{pmatrix}$$
 is of full rank. Take $C = P_1^{-1}C_2P_2$.

If rank (A^2) = rank (A), then $A^2x = 0$ and Ax = 0 have the same solution space. It follows from the above result that $A^2 = DA$ for some invertible matrix D.

- 9. What are the matrices that are similar to themselves only? ANSWER: Scalar matrices cI. Consider $P^{-1}AP = A$ or PA = AP.
- 10. Prove assertions (a) and (b) and construct an example for (c).
- (a) Let $A \in M_n(\mathbb{C})$. If the eigenvalues of A are distinct from each other, then A is diagonalizable, i.e., there is an invertible matrix P such that $P^{-1}AP$ is diagonal.
- (b) If matrix A commutes with a matrix with distinct eigenvalues, then A is diagonalizable.

(c) Give an example of a matrix A that is diagonalizable but not unitary diagonalizable, that is, $P^{-1}AP$ is diagonal for some invertible P, but U^*AU is not diagonal for any unitary matrix U.

ANSWER: (a) Let $u_1, u_2, ..., u_n$ be the eigenvectors of A belonging to the eigenvalues $\lambda_1, ..., \lambda_n$, respectively, and $\lambda_i \neq \lambda_j$ when $i \neq j$. We first show by induction that $u_1, u_2, ..., u_n$ are linealry independent.

Let

$$a_1u_1 + ... + a_nu_n = 0$$

and apply A to the above equation to get

$$a_1\lambda_1u_1 + a_2\lambda_2u_2 + \dots + a_n\lambda_nu_n = 0$$

On the other hand,

$$a_1\lambda_n u_1 + \dots + a_n\lambda_n u_n = 0.$$

Subtracting,

$$a_1 (\lambda_1 - \lambda_n) u_1 + ... + a_{n-1} (\lambda_{n-1} - \lambda_n) u_{n-1} = 0.$$

By induction, $u_1, u_2, ..., u_{n-1}$ are linearly independent and

$$a_1 = a_2 = \dots = a_{n-1} = 0$$

since $\lambda_i \neq \lambda_j$ for $i \neq j$, consequently $a_n = 0$.

Now set $P = (u_1, u_2, ..., u_n)$. Then P is an invertible matrix and

$$AP = Pdiag \left\{ \lambda_1, ..., \lambda_n \right\},\,$$

that is, $P^{-1}AP$ is a diagonal matrix.

(b) It suffices to show that if A commutes with a diagonal matrix whose diagonal entries are distinct, then A must be diagonal. This can be seen by a direct computation.

(c) Take
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

- 11. True or false
- (a) If $A^k = 0$ for all positive integers $k \ge 2$, then A = 0.
- (b) If $A^k = 0$ for some integer k, then tr A = 0.
- (c) If tr A = 0, then |A| = 0.
- (d) If A and B are similar, then |A| = |B|
- (e) If A and B are similar, then they have the same eigenvalues.
- (f) If A and B have the same eigenvalues, then they are similar.
- (g) If A and B have the same characteristic polynomial, then they have the same eigenvalues.
- (h) If A and B have the same eigenvalues, then they have the same characteristic polynomial.
 - (i) If A and B have the same characteristic polynomial, then they are similar.
 - (j) If $\operatorname{tr} A^k = \operatorname{tr} B^k$ for all positive integers k, then A = B.
- (k) If the eigenvalues of A are $\lambda_1, ..., \lambda_n$, then A is similar to the diagonal matrix $diag\{\lambda_1, ..., \lambda_n\}$.
 - (1) $diag\{1, 2, ..., n\}$ is similar to $diag\{n, ..., 2, 1\}$
 - (m) If A has a repeated eigenvalue, then A is not diagonalizable.
 - (n) If A is diagonalizable, then A is normal.
 - (o) If A is unitarily diagonalizable, then A is normal.
 - (p) If A has r nonzero eigenvalues, then rank $(A) \geq r$.

ANSWER: (a)False (b)True (c)False (d)True (e)True (f)False (g)True (h)True (i)False

12. Let $A \in M_n(\mathbb{C})$ and $A \neq 0$. Define a transformation on $M_n(\mathbb{C})$ by $\mathcal{T}(X) = AX - XA$, $X \in M_n(\mathbb{C})$

Show that

- (a) \mathcal{T} is linear
- (b) Zero is an eigenvalue of T
- (c) If $A^k = 0$, then $T^{2k} = 0$.
- (d) If A is diagonalizable, so is \mathcal{T} .
- (e) $\mathcal{T}(XY) = X\mathcal{T}(Y) + \mathcal{T}(X)Y$.
- (f) If A and B commute, so do \mathcal{T} and \mathcal{L} where \mathcal{L} is defined as $\mathcal{L}(X) = BX XB, X \in M_n(\mathbb{C})$.

Find all A such that $\mathcal{T} = 0$ and discuss the converse of (f).

ANSWER: (a) By direct verification

- (b) T(A) = 0
- (c) Compute $\mathcal{T}^{2}(X)$, $\mathcal{T}^{3}(X)$, ... it can be seen that each term of $\mathcal{T}^{2k}(X)$ contains a factor of A^{m} , $m \leq k$. Thus $\mathcal{T}^{2k} = 0$.
 - (d) Let

$$P^{-1}AP = diag \left\{ \lambda_1, ..., \lambda_n \right\}$$

and let P_i be the i^{th} column of P. Then

$$AP_i = \lambda_i P_i, i = 1, 2, ..., n.$$

Let B_{ij} be the matrix having P_i as its j^{th} column and 0 as other columns. Then $\{B_{ij}\}$ form a basis for $M_n(\mathbb{C})$ and \mathcal{T} has the matrix representation on the basis

$$T = \begin{pmatrix} \lambda_1 I - A^t & 0 & \cdots & 0 \\ 0 & \lambda_2 I - A^t & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n I - A^t \end{pmatrix}$$

It is easily noted that if A is diagonalizable, so is \mathcal{T} .

- (e) By a direct verification.
- (f) If \mathcal{T} and \mathcal{L} commute, then $\mathcal{TL}(X) = LT(X)$ is equivalent to ABX + XBA = BAX + XAB

or

$$(AB - BA) X = X (AB - BA)$$

When A and B commute, AB - BA = 0. So $\mathcal{T} = 0$ if and only if A is a scalar matrix, cI_n .

If \mathcal{T} commutes with \mathcal{L} , then AB-BA commutes with any matrix in $M_n\left(\mathbb{C}\right)$. Thus AB-BA is a scalar matrix. On the other hand $\operatorname{tr}\left(AB-BA\right)=0$, so AB=BA.

- 13. Let W be an invariant subspace of a linear transformation \mathcal{A} on a finite-dimensional vector space V.
 - (a) Show that if \mathcal{A} is invertible, then W is also invariant under \mathcal{A}^{-1} .
 - (b) If $V = W \oplus W'$, is W' necessarily invariant under A?

ANSWER: (a) Apply \mathcal{A}^{-1} to both sides of $\mathcal{A}(W) \subseteq W$ to get

$$W\subseteq \mathcal{A}^{-1}\left(W\right)$$
.

On the other hand,

$$\dim \mathcal{A}^{-1}(W) \leq \dim W$$
,

Therefore

$$W = \mathcal{A}^{-1}(W).$$

- (b) No, in general.
- 14. Show that if A is an invertible Hermitian matrix, then there exists and invertible matrix P such that $P^*AP = A^{-1}$.

ANSWER: Consider the case when A is real diagonal.

15. Is it possible for some non-Hermitian matrix $A \in M_n(\mathbb{C})$ to satisfy $x^*Ax \ge 0$ for all $x \in \mathbb{R}^n$? $x \in \mathbb{C}^n$?

ANSWER: Yes, when $x \in \mathbb{R}^n$. For instance, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. No when $x \in$ \mathbb{C}^n . In this case A must be Hermitian.

- 16. Construct examples
- (a) Matrices A and B that have only positive eigenvalues, AB has only negative eigenvalues. (Note that A and B are not necessarily Hermitian).
- (b) Is it possible that A + B has only negative eigenvalues for matrices A and B with positive eigenvalues?
 - (c) Matrices A, B, and C are positive definite, ABC has only negative entries.
 - (d) Is it possible that the matrices in (c) are 3×3 ?

ANSWER: (a) Take
$$A = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -5 \\ 0 & 1 \end{pmatrix}$ (b) No, because $\operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B > 0$.

- (c) Take

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}, \, B = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}, \, \text{and} \, \, C = \begin{pmatrix} 1 & 0 \\ 0 & 30 \end{pmatrix}.$$

Then A, B, and C are positive definite, the eigenvalues of ABC are -5, -12.

- (d) No. Note that |ABC| > 0.
- 17. Let $A \in M_n(\mathbb{C})$ be a normal matrix. Show that
- (a) $\ker A^* = \ker A$
- (b) $\operatorname{Im} A^* = \operatorname{Im} A$
- (c) $\mathbb{C}^n = \operatorname{Im} A \oplus \ker A$

ANSWER: (a) It is sufficient to show that $\ker A^* \subseteq \ker A$. The other way around is similar. Let

$$x \in \ker A^* \text{ or } A^*x = 0,$$

then $AA^*x = 0$ and $A^*Ax = 0$ as A is normal. Thus $x^*A^*Ax = (Ax)^*(Ax) =$ 0 and ax = 0.

(b) Let $x \in \text{Im } A^*$ and $x = A^*y$. Since A is normal, assume $A^* = AU$ for some unitary matrix U, then

$$x = A^*y = AUy \in \operatorname{Im} A.$$

Thus $\operatorname{Im} A^* \subseteq \operatorname{Im} A$. The other direction is similar.

(c) It suffices to show that $\operatorname{Im} A^* \cap \ker A = \{0\}$. Let $x = A^*y$ and Ax = 0. Then

$$0 = y^*Ax = y^*AA^*y$$

and $A^*y = 0$, i.e., $x = 0$.

- 18. A permutation matrix is a matrix which has exactly one 1 in each row and each column.
 - (a) How many $n \times n$ permutation matrices are there?
- (b) The product of two permutation matrices of the same size is also a permutation matrix. How about the sum?
- (c) Show that any permutation matrix is invertible and its inverse is equal to its transpose.
 - (d) For what permutation matrices P, does $P^2 = I$?

ANSWER: (a) n!, the size of S_n , the symmetric group on n objects.

- (b) By a direct verification. No.
- (c) If P is a permutation matrix, then $PP^t = I$.
- (d) Symmetric permutation matrices.
- 19. Let P be the $n \times n$ permutation matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 0 & I_{n-1} \\ 1 & 0 \end{pmatrix}$$

Then show the following

(a) For any positive integer $k \leq n$,

For any positive integer
$$k$$
 y
$$P^{k} = \begin{pmatrix} 0 & I_{n-k} \\ I_{k} & 0 \end{pmatrix}, \text{ and }$$

$$P^{n-1} = P^{t}, P^{n} = I_{n}$$

- (b) $P, P^2, ..., P^n$ are linearly independent.
- (c) $P^i + P^j$ is a normal matrix
- (d) For $n \geq 3$, P is diagonalizable over \mathbb{C} , but not over \mathbb{R} .
- (e) For every P^i , there exists a permutation matrix T such that $T^{-1}P^iT = P$.

ANSWER: (a) By direct computations. Note that for any matrix A, AP is the matrix obtained from A by moving the last column of A to the first column.

(b) Consider

$$k_1 P + k_2 P^2 + \dots + k_n P^n = 0$$

Since the k's are in different positions of the matrix on the left hand side, it follows that all the k's must be equal to zero.

- (c) It is routine to check.
- (d) i + j is divisible by n.
- (e) Note the characteristic polynomial of P is $\lambda^n 1$.

(f) Take $T = (t_{ij})$ to be the permutation matrix with $t_{k,k'} = 1, k = 1, 2, ..., n$, and 0 otherwise, where k' is the positive integer such that

$$0 < k' = (k-1)i + 1 - mn \le n$$

for some nonnegative integer m. For instance, if n = 5 and i = 3, then

$$t_{11} = t_{24} = t_{32} = t_{45} = t_{53} = 1$$

and 0 otherwise. It is easy to check that $T^{-1}P^3T=P$. This is a well-known result from group theory.

20. Let \mathcal{A} be a linear transformation on an inner product space V. Show that for any unit vector $x \in V$

$$(Ax, x)(x, Ax) \le (Ax, Ax)$$
.

In particular, for $A \in M_n(\mathbb{C})$ and $x \in \mathbb{C}^n$ with ||x|| = 1,

$$x^*A^*xx^*Ax \le x^*A^*Ax.$$

ANSWER: Recall the Cauchy-Scharz inequality

$$\left| (x,y) \right|^2 \le (x,x) \left(y,y \right)$$

$$(x,y)(y,x) \le (x,x)(y,y)$$

So if x is a unit vector,

$$(x,y)(y,x) \le (y,y).$$

Replace y by Ax,

$$(\mathcal{A}x, x) (x, \mathcal{A}x) \le (\mathcal{A}x, \mathcal{A}x).$$

When $A \in M_n(\mathbb{C})$ and $x \in \mathbb{C}^n$ with $x^*x = 1$, $x^*Axx^*A^*x \le x^*A^*Ax.$

21. Let $e_1, e_2, ..., e_n$ be vectors of an inner product space over a field \mathbb{F} , and let $A = (a_{ij})$, where

$$a_{ij} = (e_i, e_j), i, j = 1, 2, ..., n.$$

Show that $e_1, e_2, ..., e_n$ are linearly independent if and only if A is nonsingular.

ANSWER: Let

$$\lambda_1 e_1 + \dots + \lambda_n e_n = 0.$$

Take the inner product of both sides with e_i , i = 1, 2, ..., n. Then consider the linear equation system of $\lambda_1, \lambda_2, ..., \lambda_n$.

- 22. Let V be an inner product space over \mathbb{R} .
- (a) If e_1, e_2, e_3 are three vectors in V with pairwise product negative, that is, $(e_i, e_j) < 0, i, j = 1, 2, 3, i \neq j$, show that e_1, e_2, e_3 are linearly independent.
- (b) Is it possible for three vectors in the xy-plane to have pairwise negative products?
- (c) Does (a) remain valid when the word "negative" is replaced with "positive"?
- (d) Suppose that u, v, and w are three unit vectors in the xy-plane. What are the maximum and minimum values that

$$(u, v) + (v, w) + (w, u)$$

can attain? and when?

ANSWER: (a) Suppose that e_1, e_2, e_3 are linealry dependent. It may be assume that e_1, e_2 , and e_3 are unit vectors and that

$$e_3 = \lambda_1 e_1 + \lambda_2 e_2.$$

Then

$$(e_1, e_3) = \lambda_1 + \lambda_2 (e_1, e_2) < 0$$

and

$$(e_2, e_3) = \lambda_1 (e_1, e_2) + \lambda_2 < 0.$$

Thus when $(e_1, e_2) < 0$

$$\lambda_2 < \lambda_1 [-(e_1, e_2)] < \lambda_2 [-(e_1, e_2)]^2$$

 $\lambda_2 < \lambda_1 \left[-(e_1,e_2) \right] < \lambda_2 \left[-(e_1,e_2) \right]^2$. Hence $(e_1,e_2)^2 > 1$. This is impossible when e_1 and e_2 are unit vectors.

- (b) No, since the dimension of the xy-plane is 2.
- (d) $-\frac{3}{2}$, 3. The maximum is attained when u=v=w and the minimum is

attained when the angles between any two of them are equal to $\frac{2\pi}{2}$.

23. If $\{e_1, ..., e_n\}$ is an orthonormal basis for an inner product space V over \mathbb{C} , and $x \in V$, show that

$$x = \sum_{i=1}^{n} (x, e_i) e_i$$

and

$$(x,x) \ge \sum_{i=1}^{k} |(x,e_i)|^2, 1 \le k \le n.$$

 $(x,x) \ge \sum_{i=1}^k |(x,e_i)|^2$, $1 \le k \le n$. Why are pairwise orthogonal nonzero vectors linearly independent?

ANSWER: Let $x = \lambda_1 e_1 + ... + \lambda_n e_n$. Taking the inner product of both sides with e_i we get:

$$\lambda_i = (x, e_i), i = 1, 2, ..., n.$$

Then by a direct computation we have $(x, x) = |\lambda_1|^2 + ... + |\lambda_n|^2$

$$(x,x) = |\lambda_1|^2 + \dots + |\lambda_n|^2$$

- 24. Let W be a subspace of an inner product space V and let S be a subset of V. Answer true or false.
 - (a) There is a unique subspace W' such that W' + W = V.
 - (b) There is a unique subspace W' such that $W' \oplus W = V$.
- (c) There is a unique subspace W' such that $W' \oplus W = V$ and (w, w') = 0for all $w \in W$ and $w' \in W'/$

(d)
$$(W^{\perp})^{\perp} = W$$
.

(e)
$$\left(S^{\perp}\right)^{\perp} = S$$

$$(f) \left[\left(S^{\perp} \right)^{\perp} \right]^{\perp} = S^{\perp}$$

$$(g) \left(S^{\perp} + W\right)^{\perp} = \left(S^{\perp}\right)^{\perp} \cap W^{\perp}$$

$$(h) \left(S^{\perp} \cap W\right)^{\perp} = \left(S^{\perp}\right)^{\perp} + W^{\perp}$$

$$\text{(h) } \left(\boldsymbol{S}^{^{\perp}} \cap \boldsymbol{W}\right)^{^{\perp}} = \left(\boldsymbol{S}^{^{\perp}}\right)^{^{\perp}} + \boldsymbol{W}^{^{\perp}}$$

ANSWER: (a)False (b)False (c)True (d)True (e)False (f)True (g)True (h)True