
1 Linear Algebra Problems Solutions

1. Let A∗ be the conjugate transpose of the complex matrix A, i.e., A∗ =
(
Ā

)t
.

A is said to be Hermitian if A∗ = A, real symmetric if A is real and At = A,
skew-Hermitian if A∗ = −A and normal if A∗A = AA∗.

Find the dimension and a basis for each of the following vector spaces.
(a) Mn (C) , n× n complex matrices, over C.
(b) Mn (C) over R
(c) Hn (C) , n× n Hermitian matrices, over R
(d) Hn (R) , n× n real symmetric matrices, over R
(e) Sn (C) , n× n skew-Hermitian matrices, over R
(f) The space consisting of all real polynomials of A over R, where

A =

1 0 0
0 ω 0
0 0 ω2

 , ω =
−1 +

√
3i

2

Is Hn (C) a vector space over C? IS the set of n × n normal matrices a
subspace of Mn (C)? Show that Mn (C) = Hn (C) + Sn (C) , i.e., any n × n
matrix is a sum of Hermitian matrix and a skew-Hermitian matrix.

ANSWER: Note Eij is the n × n matrix with 1 in the ij position and 0
elsewhere.

(a) Est, 1 ≤ s, t ≤ n for a basis. dim = n2.
(b) Est, iEst, 1 ≤ s, t ≤ n form a basis. Dimension is 2n2.
(c) Est + Ets, s ≤ t and i (Est − Ets) , s < t, for a basis with dimension n2.

(d) Est + Ets, s ≤ t, form a basis. Dimension is
n (n + 1)

2
(e) Est −Ets, s < t and i (Est + Est) , s ≤ t, form a basis. Dimension is n2.
(f)

{
I,A, A2

}
is a basis. Dimension is 3.

Hn (C) and the set of normal matrices are not vector spaces. To see that
Mn (C) = Hn (C) + Sn (C) , write

A =
A + A∗

2
+

A−A∗

2

2. Find the space of matrices commuting with
(a) A = In

(b) A =
(

1 1
0 1

)
(c) A =

(
a 0
0 b

)
, a 6= b

(d) A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


(e) All n× n matrices
ANSWER: (a) All n× n matrices

(b) All the matrices of the form
(

a b
0 a

)
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(c) All the matrices of form
(

c 0
0 d

)

(d) All the matrices of form


a b c d
0 a b c
0 0 a b
0 0 0 a


(e) All the n× n scalar matrices cIn.

3. True or False. If true, what is the dimension? Basis?
(a)

{
(x, y) : x2 + y2 = 0, x, y ∈ R

}
is a subspace of R2.

(b)
{
(x, y) : x2 + y2 = 0, x, y ∈ C

}
is a subspace of C2.

(c)
{
(x, y) : x2 − y2 = 0, x, y ∈ R

}
is a subspace of R2.

(d) {(x, y) : x− y = 0, x, y ∈ R} is a subspace of R2.
(e) {(x, y) : x− y = 1, x, y ∈ R} is a subspace of R2.
(f) {p (x) : p (x) ∈ P [x] has degree 3} is a subspace of P [x] .
(g) {p (x) : p (0) = 0, p (x) ∈ P [x]} is a subspace of P [x]
(h) {p (x) : 2p (0) = p (1)} is a subspace of P [x] .
(i) {p (x) : p (x) ≥ 0, p (x) ∈ P [x]} is a subspace of P [x] .
ANSWER: (a) True (b) False (c) False (d) True (e) False

(f) False (g) True (h) True (i) False.

4. Show that M2 (R) = W1 ⊕W2, where

W1 =
{(

a b
−b a

)
: a, b ∈ R

}
W2 =

{(
c d
d −c

)
: c, d ∈ R

}
.

ANSWER: One can see that(
x y
u v

)
=

 x + v

2
y − u

2
−y − u

2
x + v

2

 +

x− v

2
y + u

2
y + u

2
−x− v

2

 and

W1 ∩W2 = {0}

5. Let A be an n× n real matrix.
(a) Show that if At = −A and n is odd, then |A| = 0.
(b) Show that if A2 + I = 0, then n must be even.
(c) Does (b) remain true for complex matrices?
ANSWER: (a) |A| = |At| = |−A| = (−1)n |A| = − |A| if n is odd.
(b) |A|2 =

∣∣A2
∣∣ = |−I| = (−1)n

. If n is odd, then |A|2 = −1. This is
impossible when A is a real matrix.

(c) No.

6. Introduce the correspondence between complex numbers and real matri-
ces:

z = x + iy˜Z =
(

x y
−y x

)
∈ M2 (R) ,

and define for each pair of complex numbers u and v :
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q = (u, v) ∼= C (q) =
(

u v
−v̄ ū

)
∈ M2 (C)

(a) Show that z̄˜Zt.
(b) Show that ZW = WZ
(c) Show that z˜Z and w˜W imply zw + ZW.
(d) Find Zn, where z = r (cos θ + i sin θ) .
(e) What is the matrix corresponding to i?
(f) Show that |C (q)| ≥ 0. Find C (q)−1 when |u|2 + |v|2 = 1.
(g) Replace each entry of C (q) with the corresponding 2× 2 real matrix to

the entry to get

R (q) =
(

U V
−V t U t

)
∈ M4 (.)

Then |R (q)| ≥ 0.
(h) Show that R (q) is similar to a matrix of form(

U X
−X U

)
for some X.
(i) Show that R (q) is singular if and only if C (q) is singular if and only if

u = v = 0.
ANSWER: It is routine to verify (a), (b), and (c).
(d) Since zn = rn (cos nθ + sinnθ) ,

Zn = rn

(
cos nθ sinnθ
− sinnθ cos nθ

)
(e)

(
0 1
−1 0

)
(f) |C (q)| = |u|2 + |v|2 ≥ 0 and

C (q)−1 =
(

ū −v
v̄ u

)
, when |C (q)| = 1.

(g) Write u = u1 + iu2 and v = v1 + iv2 to get R (q) . Note that U and −V t

commute. By computation

|R (q)| = |UU t + V tV | =
(∣∣u2

∣∣ + |v|2
)2

≥ 0
(h) Exchange the last two rows and columns of R (q) .
(i) From (g), |R (q)| = 0 ⇐⇒ |C (q)| = 0 ⇐⇒ u = v = 0

7. True or false
(a) For any m× n matrix A with rank r, there exists invertible m×m and

n× n matrices P and Q such that

A = P

(
Ir 0
0 0

)
Q.

(b) For any n × n matrix A with rank r, there exists an invertible n × n
matrix P such that

A = P

(
Ir 0
0 0

)
P−1.

(c) If A is a real matrix and A−1 exists over C, then A−1 is also a real matrix.
(d) If (A∗)2 = A2, then A∗ = A or A∗ = −A.
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(e) If rankA = rankB, then rank
(
A2

)
= rank

(
B2

)
(f) rank (A + B) ≤ rank (A) + rank (B)
(g) rank (A−B) ≤ rank (A)− rank (B)
(h) Since (1, i) and (i,−1) are linearly independent over R, the matrix(

1 i
i −1

)
is invertible.

ANSWER: (a)True (b)False (c) True (d)False (e)False (f)True
(g)False (h)False

8. Suppose that A and B are both m× n matrices. Show that Ax = 0 and
Bx = 0 have the same solution space if and only if there exists an invertible
matrix C such that A = CB. Use this fact to show that if rank

(
A2

)
= rank (A) ,

then there exists an invertible matrix D such that A2 = DA.
ANSWER: it is sufficient to show that there is an invertible matrix C such

that A = CB when Ax = 0 and Bx = 0 have the same solution space.
First notice that A and B must have the same rank. Let P1 and P2 be the

permutation matrices such that

P1A =
(

A1

Q1A1

)
and P2B =

(
B1

Q2B1

)
,

where A1 and B1 are respectively r × r submatrices of A and B with rank
r, and Q1 and Q2 are some matrices os size (m− r) × n. Ax = 0 and Bx = 0
have the same solution space if and only if A1x = 0 and B1x = 0 have the same
solution space. We observe that

rank
[(

A1

B1

)]
= rank (B1) ,

and thus know that there is an r × r invertible matrix C1 such that A1 =
C1B1. Thus

P1A =
(

A1

Q1A1

)
=

(
C1 0

Q1C1 Im−r

) (
B1

Q2B1

)
= C2P2B

where

C2 =
(

C1 0
Q1C1 −Q2 Im−r

)
is of full rank. Take C = P−1

1 C2P2.
If rank

(
A2

)
= rank (A) , then A2x = 0 and Ax = 0 have the same solution

space. It follows from the above result that A2 = DA for some invertible matrix
D.

9. What are the matrices that are similar to themselves only?
ANSWER: Scalar matrices cI. Consider P−1AP = A or PA = AP.

10. Prove assertions (a) and (b) and construct an example for (c).
(a) Let A ∈ Mn (C) . If the eigenvalues of A are distinct from each other,

then A is diagonalizable, i.e., there is an invertible matrix P such that P−1AP
is diagonal.

(b) If matrix A commutes with a matrix with distinct eigenvalues, then A
is diagonalizable.
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(c) Give an example of a matrix A that is diagonalizable but not unitary
diagonalizable, that is, P−1AP is diagonal for some invertible P, but U∗AU is
not diagonal for any unitary matrix U.

ANSWER: (a) Let u1, u2, ..., un be the eigenvectors of A belonging to the
eigenvalues λ1, ..., λn, respectively, and λi 6= λj when i 6= j. We first show by
induction that u1, u2, ..., un are linealry independent.

Let
a1u1 + ... + anun = 0

and apply A to the above equation to get
a1λ1u1 + a2λ2u2 + ... + anλnun = 0

On the other hand,
a1λnu1 + ... + anλnun = 0.

Subtracting,
a1 (λ1 − λn) u1 + ... + an−1 (λn−1 − λn)un−1 = 0.

By induction, u1, u2, ..., un−1 are linearly independent and
a1 = a2 = ... = an−1 = 0

since λi 6= λj for i 6= j, consequently an = 0.
Now set P = (u1, u2, ..., un) . Then P is an invertible matrix and

AP = Pdiag {λ1, ..., λn} ,
that is, P−1AP is a diagonal matrix.
(b) It suffices to show that if A commutes with a diagonal matrix whose

diagonal entries are distinct, then A must be diagonal. This can be seen by a
direct computation.

(c) Take A =
(

1 1
0 0

)
11. True or false
(a) If Ak = 0 for all positive integers k ≥ 2, then A = 0.
(b) If Ak = 0 for some integer k, then trA = 0.
(c) If tr A = 0, then |A| = 0.
(d) If A and B are similar, then |A| = |B|
(e) If A and B are similar, then they have the same eigenvalues.
(f) If A and B have the same eigenvalues, then they are similar.
(g) If A and B have the same characteristic polynomial, then they have the

same eigenvalues.
(h) If A and B have the same eigenvalues, then they have the same charac-

teristic polynomial.
(i) If A and B have the same characteristic polynomial, then they are similar.
(j) If tr Ak = tr Bk for all positive integers k, then A = B.
(k) If the eigenvalues of A are λ1, ..., λn, then A is similar to the diagonal

matrix diag {λ1, ..., λn} .
(l) diag {1, 2, ..., n} is similar to diag {n, ..., 2, 1}
(m) If A has a repeated eigenvalue, then A is not diagonalizable.
(n) If A is diagonalizable, then A is normal.
(o) If A is unitarily diagonalizable, then A is normal.
(p) If A has r nonzero eigenvalues, then rank (A) ≥ r.
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ANSWER: (a)False (b)True (c)False (d)True (e)True (f)False
(g)True (h)True (i)False

12. Let A ∈ Mn (C) and A 6= 0. Define a transformation on Mn (C) by
T (X) = AX −XA, X ∈ Mn (C)

Show that
(a) T is linear
(b) Zero is an eigenvalue of T
(c) If Ak = 0, then T 2k = 0.
(d) If A is diagonalizable, so is T .
(e) T (XY ) = XT (Y ) + T (X)Y.
(f) If A and B commute, so do T and L where L is defined as

L (X) = BX −XB, X ∈ Mn (C) .
Find all A such that T =0 and discuss the converse of (f).
ANSWER: (a) By direct verification
(b) T (A) = 0
(c) Compute T 2 (X) , T 3 (X) , ... it can be seen that each term of T 2k (X)

contains a factor of Am, m ≤ k. Thus T 2k = 0.
(d) Let

P−1AP = diag {λ1, ..., λn}
and let Pi be the ith column of P. Then

APi = λiPi, i = 1, 2, ..., n.
Let Bij be the matrix having Pi as its jth column and 0 as other columns.

Then {Bij} form a basis for Mn (C) and T has the matrix representation on
the basis

T =


λ1I −At 0 · · · 0

0 λ2I −At · · · 0
...

. . .
...

0 0 · · · λnI −At


It is easily noted that if A is diagonalizable, so is T .
(e) By a direct verification.
(f) If T and L commute, then T L (X) = LT (X) is equivalent to

ABX + XBA = BAX + XAB
or

(AB −BA) X = X (AB −BA)
When A and B commute, AB − BA = 0. So T = 0 if and only if A is a

scalar matrix, cIn.
If T commutes with L, then AB−BA commutes with any matrix in Mn (C) .

Thus AB − BA is a scalar matrix. On the other hand tr (AB −BA) = 0, so
AB = BA.

13. Let W be an invariant subspace of a linear transformation A on a finite-
dimensional vector space V.

(a) Show that if A is invertible, then W is also invariant under A−1.
(b) If V = W ⊕W ′, is W ′ necessarily invariant under A?
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ANSWER: (a) Apply A−1 to both sides of A (W ) ⊆ W to get
W ⊆ A−1 (W ) .

On the other hand,
dimA−1 (W ) ≤ dim W,

Therefore
W = A−1 (W ) .

(b) No, in general.

14. Show that if A is an invertible Hermitian matrix, then there exists and
invertible matrix P such that P ∗AP = A−1.

ANSWER: Consider the case when A is real diagonal.

15. Is it possible for some non-Hermitian matrix A ∈ Mn (C) to satisfy
x∗Ax ≥ 0 for all x ∈ Rn? x ∈ Cn?

ANSWER: Yes, when x ∈ Rn. For instance, A =
(

0 1
−1 0

)
. No when x ∈

Cn. In this case A must be Hermitian.

16. Construct examples
(a) Matrices A and B that have only positive eigenvalues, AB has only

negative eigenvalues. (Note that A and B are not necessarily Hermitian).
(b) Is it possible that A + B has only negative eigenvalues for matrices A

and B with positive eigenvalues?
(c) Matrices A,B, and C are positive definite, ABC has only negative entries.
(d) Is it possible that the matrices in (c) are 3× 3?

ANSWER: (a) Take A =
(

1 0
5 1

)
and B =

(
1 −5
0 1

)
(b) No, because tr (A + B) = trA + trB > 0.
(c) Take

A =
(

5 2
2 1

)
, B =

(
3 −1
−1 1

)
, and C =

(
1 0
0 30

)
.

Then A,B, and C are positive definite, the eigenvalues of ABC are −5,−12.
(d) No. Note that |ABC| > 0.

17. Let A ∈ Mn (C) be a normal matrix. Show that
(a) kerA∗ = kerA
(b) Im A∗ = Im A
(c) Cn = Im A⊕ ker A
ANSWER: (a) It is sufficient to show that kerA∗ ⊆ ker A. The other way

around is similar. Let
x ∈ ker A∗ or A∗x = 0,

then AA∗x = 0 and A∗Ax = 0 as A is normal. Thus x∗A∗Ax = (Ax)∗ (Ax) =
0 and ax = 0.

(b) Let x ∈ Im A∗ and x = A∗y. Since A is normal, assume A∗ = AU for
some unitary matrix U, then

x = A∗y = AUy ∈ Im A.
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Thus Im A∗ ⊆ Im A. The other direction is similar.
(c) It suffices to show that Im A∗ ∩ ker A = {0} . Let x = A∗y and Ax = 0.

Then
0 = y∗Ax = y∗AA∗y

and A∗y = 0, i.e., x = 0.

18. A permutation matrix is a matrix which has exactly one 1 in each row
and each column.

(a) How many n× n permutation matrices are there?
(b) The product of two permutation matrices of the same size is also a

permutation matrix. How about the sum?
(c) Show that any permutation matrix is invertible and its inverse is equal

to its transpose.
(d) For what permutation matrices P, does P 2 = I?
ANSWER: (a) n!, the size of Sn, the symmetric group on n objects.
(b) By a direct verification. No.
(c) If P is a permutation matrix, then PP t = I.
(d) Symmetric permutation matrices.

19. Let P be the n× n permutation matrix

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0


=

(
0 In−1

1 0

)

Then show the following
(a) For any positive integer k ≤ n,

P k =
(

0 In−k

Ik 0

)
, and

Pn−1 = P t, Pn = In

(b) P, P 2, ..., Pn are linearly independent.
(c) P i + P j is a normal matrix
(d) For n ≥ 3, P is diagonalizable over C, but not over R.
(e) For every P i, there exists a permutation matrix T such that T−1P iT = P.
ANSWER: (a) By direct computations. Note that for any matrix A, AP is

the matrix obtained from A by moving the last column of A to the first column.
(b) Consider

k1P + k2P
2 + ... + knPn = 0

Since the k′s are in different positions of the matrix on the left hand side, it
follows that all the k′s must be equal to zero.

(c) It is routine to check.
(d) i + j is divisible by n.
(e) Note the the characteristic polynomial of P is λn − 1.
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(f) Take T = (tij) to be the permutation matrix with tk,k′ = 1, k = 1, 2, ..., n,
and 0 otherwise, where k′ is the positive integer such that

0 < k′ = (k − 1) i + 1−mn ≤ n
for some nonnegative integer m. For instance, if n = 5 and i = 3, then

t11 = t24 = t32 = t45 = t53 = 1
and 0 otherwise. It is easy to check that T−1P 3T = P. This is a well-known

result from group theory.

20. Let A be a linear transformation on an inner product space V. Show
that for any unit vector x ∈ V

(Ax, x) (x, Ax) ≤ (Ax, Ax) .
In particular, for A ∈ Mn (C) and x ∈ Cn with ||x|| = 1,

x∗A∗xx∗Ax ≤ x∗A∗Ax.
ANSWER: Recall the Cauchy-Scharz inequality

|(x, y)|2 ≤ (x, x) (y, y)
or

(x, y) (y, x) ≤ (x, x) (y, y)
So if x is a unit vector,

(x, y) (y, x) ≤ (y, y) .
Replace y by Ax,

(Ax, x) (x,Ax) ≤ (Ax,Ax) .
When A ∈ Mn (C) and x ∈ Cn with x∗x = 1,

x∗Axx∗A∗x ≤ x∗A∗Ax.

21. Let e1, e2, ..., en be vectors of an inner product space over a field F, and
let A = (aij) , where

aij = (ei, ej) , i, j = 1, 2, ..., n.
Show that e1, e2, ..., en are linearly independent if and only if A is nonsingu-

lar.
ANSWER: Let

λ1e1 + ... + λnen = 0.
Take the inner product of both sides with ei, i = 1, 2, ..., n. Then consider

the linear equation system of λ1, λ2, ..., λn.

22. Let V be an inner product space over R.
(a) If e1, e2, e3 are three vectors in V with pairwise product negative, that is,

(ei, ej) < 0, i, j = 1, 2, 3, i 6= j,show that e1, e2, e3 are linearly independent.
(b) Is it possible for three vectors in the xy-plane to have pairwise negative

products?
(c) Does (a) remain valid when the word ”negative” is replaced with ”posi-

tive”?
(d) Suppose that u, v, and w are three unit vectors in the xy-plane. What

are the maximum and minimum values that
(u, v) + (v, w) + (w, u)

can attain? and when?
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ANSWER: (a) Suppose that e1, e2, e3 are linealry dependent. It may be
assume that e1, e2, and e3 are unit vectors and that

e3 = λ1e1 + λ2e2.
Then

(e1, e3) = λ1 + λ2 (e1, e2) < 0
and

(e2, e3) = λ1 (e1, e2) + λ2 < 0.
Thus when (e1, e2) < 0

λ2 < λ1 [− (e1, e2)] < λ2 [− (e1, e2)]
2
.

Hence (e1, e2)
2

> 1. This is impossible when e1 and e2 are unit vectors.
(b) No, since the dimension of the xy-plane is 2.
(c) No.

(d) −3
2
, 3. The maximum is attained when u = v = w and the minimum is

attained when the angles between any two of them are equal to
2π

3
.

23. If {e1, ..., en} is an orthonormal basis for an inner product space V over
C, and x ∈ V, show that

x =
∑n

i=1 (x, ei) ei

and
(x, x) ≥

∑k
i=1 |(x, ei)|2 , 1 ≤ k ≤ n.

Why are pairwise orthogonal nonzero vectors linearly independent?
ANSWER: Let x = λ1e1 + ...+λnen. Taking the inner product of both sides

with ei we get:
λi = (x, ei) , i = 1, 2, ..., n.

Then by a direct computation we have
(x, x) = |λ1|2 + ... + |λn|2

24. Let W be a subspace of an inner product space V and let S be a subset
of V. Answer true or false.

(a) There is a unique subspace W ′ such that W ′ + W = V.
(b) There is a unique subspace W ′ such that W ′ ⊕W = V.
(c) There is a unique subspace W ′ such that W ′ ⊕W = V and (w,w′) = 0

for all w ∈ W and w′ ∈ W ′/

(d)
(
W⊥)⊥

= W.

(e)
(
S
⊥
)⊥

= S

(f)
[(

S
⊥
)⊥]⊥

= S
⊥

(g)
(
S
⊥

+ W
)⊥

=
(
S
⊥
)⊥

∩W
⊥

(h)
(
S
⊥ ∩W

)⊥

=
(
S
⊥
)⊥

+ W
⊥

ANSWER: (a)False (b)False (c)True (d)True (e)False (f)True
(g)True (h)True
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