1 Math 511b Test Review

Module Test - Review

- 1. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as \mathbb{Z} -modules.
- 2. Show that \mathbb{Q} is not a free \mathbb{Z} -module.
- 3. Describe the abelian group with the presentation

$$A = \langle a, b, c : 4a + 10b - 8c = 0, 2a + 8b - 4c = 0 \rangle$$

- 4. Let F be a field and V and n dimensional vector space over F. There is an F-linear endomorphism T of the tensor product $V \otimes V$ mapping $v \otimes w$ to $T(v \otimes w) = w \otimes v$ for all $v, w \in V$. Determine the eigenvalues of T and further determine bases for corresponding eigenspaces.
- 5. Proof or counterexample:
 - (a) If R is a PID and M is a finitely generatored torsion-free R-module then M is free.
 - (b) If R is an ID and M is a finitely generated torsion free R-module, then M is free.
 - (c) Every submodule of a free module is free.
 - (d) R is commutative with 1; M an R-module implies that M is a finite set if and only if finitely generated and every element is a torsion element.
 - (e) If E and F are free R-modules, then $E \oplus F$ is free.
- 6. Find the characteristic polynomial, minimal polynomial, rational cannonical form, and the JCF of $A=\begin{pmatrix}0&4&0\\2&0&8\\0&-1&0\end{pmatrix}$.
- 7. Suppose A and B are finitely generated abelian groups. View A and B as \mathbb{Z} -modules. Compute $A \otimes_{\mathbb{Z}} B$ as explicitly as possible.
- 8. Let $0 \to A \to B \to C \to 0$ be an exact sequence of R-modules where R is any ring with 1. Prove that if B has torsion elements then either A or C has torsion elements.
- 9. Let M be a unitary cyclic R-module, R a ring with 1. Show that $M \cong R/I$ for some left ideal I in R.
- 10. Let M be an R-module and let A,B,C be submodules. If $C\subseteq A,$ prove that

1

$$A \cap (B+C) = (A \cap B) + C.$$

11. Suppose that

is a commutative diagram of R-modules and R-module homomorphisms. Assume that the rows are exact and that f and h are isomorphisms. Prove that g is an isomorphism.

- 12. Suppose F is a field, A and B are $n \times n$ matrices over F and $A' = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ is similar to $B' = \begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix}$. Show that A and B are similar over F.
- 13. Use Smith Normal Form to find all integral solutions of the equation

$$2x_1 - 7x_2 + 12x_3 = 4$$
$$-4x_1 + 3x_2 - 2x_3 = -8$$

- 14. Suppose $T:V\to V$ is a linear transformation on a finite dimensional vector space V over a field F, and that T has invariant factors $x-1,x\left(x-1\right)$, and $x\left(x-1\right)^{2}$.
 - (a) What is $\dim_F V$?
 - (b) Is T one-to-one?
 - (c) What is the minimal polynomial of T.
 - (d) What are the RCF and JCF?
- 15. An $n \times n$ matrix A over a field F is called nilpotent if $A^k = 0$ for some k.
 - (a) Is A diagonalizable?
 - (b) Does A necessarily have a JCF? If so, what does it look like?
- 16. An R-module P is called projective if given any modules M and N with $M \to N$ and $f: P \to N$, then there exists a F s.t. the following diagram commutes.

$$\begin{pmatrix} & & P \\ & F & \swarrow & \downarrow f \\ M & \xrightarrow{\phi} & N \end{pmatrix}, \text{ i.e. } \phi F = f.$$

Prove that this implies that P is a direct summand of a free module.

17. Suppose R is a ring with 1, L is a unitary R-module, M and N are submodules of L and both M+N and $M\cap N$ are finitely generated. Show that M and N are finitely generated.

2