Linear Algebra Problems 1

1. Let A^* be the conjugate transpose of the complex matrix A, i.e., $A^* = (\bar{A})^t$. A is said to be Hermitian if $A^* = A$, real symmetric if A is real and $A^t = A$, skew-Hermitian if $A^* = -A$ and normal if $A^*A = AA^*$.

Find the dimension and a basis for each of the following vector spaces.

- (a) $M_n(\mathbb{C})$, $n \times n$ complex matrices, over \mathbb{C} .
- (b) $M_n(\mathbb{C})$ over \mathbb{R}
- (c) $H_n(\mathbb{C})$, $n \times n$ Hermitian matrices, over \mathbb{R}
- (d) $H_n(\mathbb{R})$, $n \times n$ real symmetric matrices, over \mathbb{R}
- (e) $S_n(\mathbb{C})$, $n \times n$ skew-Hermitian matrices, over \mathbb{R}
- (f) The space consisting of all real polynomials of A over \mathbb{R} , where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}, \, \omega = \frac{-1 + \sqrt{3}i}{2}$$

 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}, \ \omega = \frac{-1 + \sqrt{3}i}{2}$ Is $H_n(\mathbb{C})$ a vector space over \mathbb{C} ? IS the set of $n \times n$ normal matrices a subspace of $M_n(\mathbb{C})$? Show that $M_n(\mathbb{C}) = H_n(\mathbb{C}) + S_n(\mathbb{C})$, i.e., any $n \times n$ matrix is a sum of Hermitian matrix and a skew-Hermitian matrix.

- 2. Find the space of matrices commuting with

(a)
$$A = I_n$$

(b) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
(c) $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a \neq b$
(d) $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

- (e) All $n \times n$ matrices
- 3. True or False. If true, what is the dimension? Basis?
- (a) $\{(x,y): x^2+y^2=0, x,y\in\mathbb{R}\}$ is a subspace of \mathbb{R}^2 . (b) $\{(x,y): x^2+y^2=0, x,y\in\mathbb{C}\}$ is a subspace of \mathbb{C}^2 .
- (c) $\{(x,y): x^2 y^2 = 0, x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (d) $\{(x,y): x-y=0, x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 . (e) $\{(x,y): x-y=1, x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- (f) $\{p(x): p(x) \in \mathbb{P}[x] \text{ has degree 3}\}$ is a subspace of $\mathbb{P}[x]$.
- (g) $\{p(x): p(0) = 0, p(x) \in \mathbb{P}[x]\}$ is a subspace of $\mathbb{P}[x]$
- (h) $\{p(x): 2p(0) = p(1)\}\$ is a subspace of $\mathbb{P}[x]$.
- (i) $\{p(x): p(x) \geq 0, p(x) \in \mathbb{P}[x]\}\$ is a subspace of $\mathbb{P}[x]$.

4. Show that
$$M_2(\mathbb{R}) = W_1 \oplus W_2$$
, where
$$W_1 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

$$W_2 = \left\{ \begin{pmatrix} c & d \\ d & -c \end{pmatrix} : c, d \in \mathbb{R} \right\}.$$

- 5. Let A be an $n \times n$ real matrix.
- (a) Show that if $A^t = -A$ and n is odd, then |A| = 0.
- (b) Show that if $A^2 + I = 0$, then n must be even.
- (c) Does (b) remain true for complex matrices?
- 6. Introduce the correspondence between complex numbers and real matrices:

$$z=x+iy\tilde{\ }Z=\begin{pmatrix}x&y\\-y&x\end{pmatrix}\in M_{2}\left(\mathbb{R}\right),$$
 and define for each pair of complex numbers u and v :

$$q = (u, v) \cong C(q) = \begin{pmatrix} u & v \\ -\bar{v} & \bar{u} \end{pmatrix} \in M_2(\mathbb{C})$$
Show that $\bar{z} \subset Z^t$

- (a) Show that $\bar{z}^{\sim}Z^t$.
- (b) Show that ZW = WZ
- (c) Show that $z \tilde{z} Z$ and w W imply zw + ZW.
- (d) Find Z^n , where $z = r(\cos \theta + i \sin \theta)$.
- (e) What is the matrix corresponding to i?
- (f) Show that $|C(q)| \ge 0$. Find $C(q)^{-1}$ when $|u|^2 + |v|^2 = 1$.
- (g) Replace each entry of C(q) with the corresponding 2×2 real matrix to the entry to get

$$\mathcal{R}\left(q\right) = \begin{pmatrix} U & V \\ -V^{t} & U^{t} \end{pmatrix} \in M_{4}\left(.\right)$$

(h) Show that $\mathcal{R}(q)$ is similar to a matrix of form

$$\begin{pmatrix} U & X \\ -X & U \end{pmatrix}$$

- (i) Show that $\mathcal{R}(q)$ is singular if and only if $\mathcal{C}(q)$ is singular if and only if u = v = 0.
 - 7. True or false
- (a) For any $m \times n$ matrix A with rank r, there exists invertible $m \times m$ and $n \times n$ matrices P and Q such that

$$A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q.$$

 $A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q.$ (b) For any $n \times n$ matrix A with rank r, there exists an invertible $n \times n$

matrix
$$P$$
 such that
$$A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} P^{-1}.$$

- (c) If A is a real matrix and A^{-1} exists over \mathbb{C} , then A^{-1} is also a real matrix.
- (d) If $(A^*)^2 = A^2$, then $A^* = A$ or $A^* = -A$.
- (e) If rank $A = \operatorname{rank} B$, then rank $(A^2) = \operatorname{rank} (B^2)$
- (f) $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

- (g) $\operatorname{rank}(A B) \le \operatorname{rank}(A) \operatorname{rank}(B)$
- (h) Since (1,i) and (i,-1) are linearly independent over \mathbb{R} , the matrix $\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ is invertible.
- 8. Suppose that A and B are both $m \times n$ matrices. Show that Ax = 0 and Bx = 0 have the same solution space if and only if there exists an invertible matrix C such that A = CB. Use this fact to show that if rank $(A^2) = \operatorname{rank}(A)$, then there exists an invertible matrix D such that $A^2 = DA$.
 - 9. What are the matrices that are similar to themselves only?
 - 10. Prove assertions (a) and (b) and construct an example for (c).
- (a) Let $A \in M_n(\mathbb{C})$. If the eigenvalues of A are distinct from each other, then A is diagonalizable, i.e., there is an invertible matrix P such that $P^{-1}AP$ is diagonal.
- (b) If matrix A commutes with a matrix with distinct eigenvalues, then A is diagonalizable.
- (c) Give an example of a matrix A that is diagonalizable but not unitary diagonalizable, that is, $P^{-1}AP$ is diagonal for some invertible P, but U^*AU is not diagonal for any unitary matrix U.
 - 11. True or false
 - (a) If $A^k = 0$ for all positive integers $k \ge 2$, then A = 0.
 - (b) If $A^k = 0$ for some integer k, then $\operatorname{tr} A = 0$.
 - (c) If tr A = 0, then |A| = 0.
 - (d) If A and B are similar, then |A| = |B|
 - (e) If A and B are similar, then they have the same eigenvalues.
 - (f) If A and B have the same eigenvalues, then they are similar.
- (g) If A and B have the same characteristic polynomial, then they have the same eigenvalues.
- (h) If A and B have the same eigenvalues, then they have the same characteristic polynomial.
 - (i) If A and B have the same characteristic polynomial, then they are similar.
 - (j) If $\operatorname{tr} A^k = \operatorname{tr} B^k$ for all positive integers k, then A = B.
- (k) If the eigenvalues of A are $\lambda_1,...,\lambda_n$, then A is similar to the diagonal matrix $diag\{\lambda_1,...,\lambda_n\}$.
 - (l) $diag\left\{ 1,2,...,n\right\}$ is similar to $diag\left\{ n,...,2,1\right\}$
 - (m) If A has a repeated eigenvalue, then A is not diagonalizable.
 - (n) If A is diagonalizable, then A is normal.
 - (o) If A is unitarily diagonalizable, then A is normal.
 - (p) If A has r nonzero eigenvalues, then rank $(A) \geq r$.
 - 12. Let $A \in M_n(\mathbb{C})$ and $A \neq 0$. Define a transformation on $M_n(\mathbb{C})$ by $\mathcal{T}(X) = AX XA, X \in M_n(\mathbb{C})$ Show that

- (a) \mathcal{T} is linear
- (b) Zero is an eigenvalue of T
- (c) If $A^k = 0$, then $\mathcal{T}^{2k} = 0$.
- (d) If A is diagonalizable, so is \mathcal{T} .
- (e) $\mathcal{T}(XY) = X\mathcal{T}(Y) + \mathcal{T}(X)Y$.
- (f) If A and B commute, so do \mathcal{T} and \mathcal{L} where \mathcal{L} is defined as $\mathcal{L}(X) = BX XB, X \in M_n(\mathbb{C})$.

Find all A such that $\mathcal{T} = 0$ and discuss the converse of (f).

- 13. Let W be an invariant subspace of a linear transformation $\mathcal A$ on a finite-dimensional vector space V.
 - (a) Show that if \mathcal{A} is invertible, then W is also invariant under \mathcal{A}^{-1} .
 - (b) If $V = W \oplus W'$, is W' necessarily invariant under A?
- 14. Show that if A is an invertible Hermitian matrix, then there exists and invertible matrix P such that $P^*AP = A^{-1}$.
- 15. Is it possible for some non-Hermitian matrix $A \in M_n(\mathbb{C})$ to satisfy $x^*Ax > 0$ for all $x \in \mathbb{R}^n$? $x \in \mathbb{C}^n$?
 - 16. Construct examples
- (a) Matrices A and B that have only positive eigenvalues, AB has only negative eigenvalues. (Note that A and B are not necessarily Hermitian).
- (b) Is it possible that A + B has only negative eigenvalues for matrices A and B with positive eigenvalues?
 - (c) Matrices A, B, and C are positive definite, ABC has only negative entries.
 - (d) Is it possible that the matrices in (c) are 3×3 ?
 - 17. Let $A \in M_n(\mathbb{C})$ be a normal matrix. Show that
 - (a) $\ker A^* = \ker A$
 - (b) $\operatorname{Im} A^* = \operatorname{Im} A$
 - (c) $\mathbb{C}^n = \operatorname{Im} A \oplus \ker A$
- 18. A permutation matrix is a matrix which has exactly one 1 in each row and each column.
 - (a) How many $n \times n$ permutation matrices are there?
- (b) The product of two permutation matrices of the same size is also a permutation matrix. How about the sum?
- (c) Show that any permutation matrix is invertible and its inverse is equal to its transpose.
 - (d) For what permutation matrices P, does $P^2 = I$?
 - 19. Let P be the $n \times n$ permutation matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 0 & I_{n-1} \\ 1 & 0 \end{pmatrix}$$

Then show the following

(a) For any positive integer
$$k \leq n$$
,
$$P^k = \begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \end{pmatrix}, \text{ and } P^{n-1} = P^t, P^n = I_n$$
 (b) $P, P^2, ..., P^n$ are linearly independent.

- (c) $P^i + P^j$ is a normal matrix
- (d) For $n \geq 3$, P is diagonalizable over \mathbb{C} , but not over \mathbb{R} .
- (e) For every P^i , there exists a permutation matrix T such that $T^{-1}P^iT = P$.
- 20. Let \mathcal{A} be a linear transformation on an inner product space V. Show that for any unit vector $x \in V$

$$\begin{array}{c} \left(Ax,x\right)\left(x,Ax\right) \leq \left(Ax,Ax\right). \\ \text{In particular, for } A \in M_n\left(\mathbb{C}\right) \text{ and } x \in \mathbb{C}^n \text{ with } ||x|| = 1, \\ x^*A^*xx^*Ax \leq x^*A^*Ax. \end{array}$$

21. Let $e_1, e_2, ..., e_n$ be vectors of an inner product space over a field \mathbb{F} , and let $A = (a_{ij})$, where

$$a_{ij} = (e_i, e_j), i, j = 1, 2, ..., n.$$

Show that $e_1, e_2, ..., e_n$ are linearly independent if and only if A is nonsingular.

- 22. Let V be an inner product space over \mathbb{R} .
- (a) If e_1, e_2, e_3 are three vectors in V with pairwise product negative, that is,

$$(e_i, e_j) < 0, i, j = 1, 2, 3, i \neq j,$$

show that e_1, e_2, e_3 are linearly independent.

- (b) Is it possible for three vectors in the xy-plane to have pairwise negative products?
- (c) Does (a) remain valid when the word "negative" is replaced with "positive"?
- (d) Suppose that u, v, and w are three unit vectors in the xy-plane. What are the maximum and minimum values that

$$(u,v) + (v,w) + (w,u)$$

can attain? and when?

23. If $\{e_1, ..., e_n\}$ is an orthonormal basis for an inner product space V over \mathbb{C} , and $x \in V$, show that

$$x = \sum_{i=1}^{n} (x, e_i) e_i$$

$$(x,x) \ge \sum_{i=1}^{k} |(x,e_i)|^2, 1 \le k \le n.$$

 $(x,x) \ge \sum_{i=1}^{k} |(x,e_i)|^2$, $1 \le k \le n$. Why are pairwise orthogonal nonzero vectors linearly independent?

- 24. Let W be a subspace of an inner product space V and let S be a subset of V. Answer true or false.
 - (a) There is a unique subspace W' such that W' + W = V.
 - (b) There is a unique subspace W' such that $W' \oplus W = V$.
- (c) There is a unique subspace W' such that $W' \oplus W = V$ and (w, w') = 0for all $w \in W$ and $w' \in W'/$ (d) $(W^{\perp})^{\perp} = W$.

 - (e) $\left(S^{\perp}\right)^{\perp} = S$

 - (f) $\left[\left(S^{\perp} \right)^{\perp} \right]^{\perp} = S^{\perp}$ (g) $\left(S^{\perp} + W \right)^{\perp} = \left(S^{\perp} \right)^{\perp} \cap W^{\perp}$ (h) $\left(S^{\perp} \cap W \right)^{\perp} = \left(S^{\perp} \right)^{\perp} + W^{\perp}$