January 2006 Algebra Qualifying Exam Solutions

1A) Suppose A is an $n \times n$ matrix over a field F and that $A^k = 0$ for some $k \in \mathbb{N}$. Show that $A^n = 0$.

Answer: Assume that $A^k = 0$.

- 1B) Let V be a vector space over a field K. Show that the following two statements are equivalent:
 - (a) we have $\dim_K V < \infty$;
- (b) any K-linear endomorphism $f:V\to V$ satisfies an equation of the form $f^m+a_{m-1}f^{m-1}+\cdots+a_1f+a_0$, where $m\in\mathbb{N}$ and $a_0,...,a_{m-1}\in K$.

Answer: ()

2A) Let G be a finite group of order $2^n (2m+1)$. Let $H := Hom(G, \mathbb{Z}/2\mathbb{Z})$. Show that H is an abelian group whose order is 2^s for some number $s \in \{0, 1, ..., n\}$. Give examples when s = 0 and s = n.

Answer: ()

2B) If G is a group of order 4n + 2 show that G has a subgroup H of index 2.

Answer: ()

3A) If R is a ring show that all non-zero divisors in R have the same additive order. What are the possible orders?

Answer: FF

3B) Let K be a field. Let R = K[x, y] be the polynomial ring in two variables with coefficients in K. For $a \in K$, let $(x^2, y + ax)$ be the ideal of R generated by x^2 and y + ax. We consider the ideal $I := \bigcap_{a \in K} (x^2, y + ax)$ of R. Compute the smallest number $n \in \mathbb{N}$ such that I is generated by n elements. Give an example of n elements $i_1, ..., i_n \in I$ that generate I.

Answer: ()

- 4A) Let K be a Galois extension of \mathbb{Q} of degree 4. Let D be the set of those square free integers $d \in \mathbb{Z} \setminus \{1\}$ which have the property that $\mathbb{Q}\left(\sqrt{d}\right) \subseteq K$.
 - (a) Show that the set D has either 1 or 3 elements.
- (b) If $D = \{d_1, d_2, d_3\}$ has three elements, then show that the product $d_1d_2d_3$ is a perfect square.
 - (c) If $K = \mathbb{Q}(\zeta_5)$, find D.

Answer: ()

4B) Determine a Galois closure K for $L = \mathbb{Q}(3i - \sqrt{2})$ over \mathbb{Q} and determine the Galois group $G = G(K : \mathbb{Q})$.

Answer: Consider $a = 3i - \sqrt{2}$. Then $a - 3i = -\sqrt{2}$ and thus $(a - 3i)^2 = 2$ implies that $a^2 - 6ai - 9 = 2$ and so $a^2 - 11 = 6ai$ and so $(a^2 - 11)^2 = -36a^2$ and so $a^4 - 22a^2 + 121 + 36a^2 = 0$. Thus $a^4 + 14a^2 + 121$ is the minimal polynomial. It is a degree 4 irreducible polynomial and thus $G \leq S_4$

5A) An abelian group has generators a, b, c, d and defining relations 3b + 2c + 8d = 0, 5a + b - 4c + 8d = 0, -2a + b + 4c - 8d = 0 and -a + 3b + 2c + 8d = 0. Express the group as a direct sum of cyclic groups.

Answer: Consider the following matrix and its SNF:

$$\begin{bmatrix} 0 & 3 & 2 & 8 \\ 5 & 1 & -4 & 8 \\ -2 & 1 & 4 & -8 \\ -1 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 3 & 2 & 8 \\ 5 & 1 & -4 & 8 \\ -2 & 1 & 4 & -8 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 3 & 2 & 8 \\ 5 & 1 & -4 & 8 \\ -2 & 1 & 4 & -8 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 3 & 2 & 8 \\ 5 & 1 & -4 & 8 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 16 & 6 & 48 \\ 0 & -5 & 0 & -24 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & 8 \\ 0 & -5 & 0 & -24 \\ 0 & 16 & 6 & 48 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 2 & 8 \\ 0 & -2 & 2 & -16 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -4 & 8 \\ 0 & -2 & 2 & -16 \\ 0 & 3 & 2 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & -6 & 0 \\ 0 & 0 & 14 & -16 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -6 & 0 \\ 0 & 0 & 2 & -16 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & -16 \\ 0 & 0 & 0 & -48 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & -16 \\ 0 & 0 & 0 & -48 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 48 \end{bmatrix}$$

Thus $G \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/48\mathbb{Z}$.

5B) Let $K = \mathbb{F}_5 = \{[0], [1], [2], [3], [4]\}$. Let $V := K^3$. We consider the four vectors $v_1 = ([2], [3], [1]), v_2 = ([1], [2], [4]), v_3 = ([0], [1], [1])$ and $v_4 = ([4], [2], [1])$. Show that $B = \{v_1, v_2, v_3\}$ is a K-basis of V. Compute the coordinates of v_4 with respect to B. Answer: ()