January 2005
Algebra Qualifying Exam

1 4 =2
IA)IfA= |4 1 —2| find an orthogonal matrix P so that P~'AP is diagonal.
-2 -2 =2

Answer: First we note that this is a symmetric matrix and thus has real eigenvalues. Next
we compute the eigenvalues.

1—2z 4 -2
4 1—-z =2 = 1-2)[1-2)(-2—1x)—4]
2 92 2
—4[4(-2—2)—4]+(-2)[-8+2(1 — x)]
= —(x3—27:p—54)

We see that —3 is a root. Thus z* — 27z — 54 = (z — 6) (x + 3) (r + 3). Thus we have
eigenvalues 6 and —3 (mult.2). We solve for the eigenvectors and get (1,1, —1/2), (1,0,2),
and (0,1,2). Thus

6 0 0 11 —1/2 4/9  5/9 —4/9
0 -3 0|=1{10 2 [A|4/9 —4/9 5/9
0 0 -3 01 2 —2/9 2/9  2/9

However, we also need that P is orthogonal. In our case we need that AA” = I. Thus we
need to do the gram-schmidt orthogonalization process to our eigenvectors. Final answer:
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1B) Let F be a field. Let 3 := {ey,es,e3} be the standard basis of F3. Let T : F? — F?
be the linear transformation such that 7' (e;) = 0, T (ea) = ey, and T'(e3) = ez + e3. Find
all linear transformations U : F? — F* such that we have UT = 0 and the range of TU is
R(TU) ={ae; : a € F}.

Answer: As we have chosen a matrix, we may write down a linear transformation as a
matrix

010 €1
Tv=10 0 1 ()]
0 01 €3
Now we need to find U:
11 X122 T13 010 000
To1 X922 T923 0 0 1| =1(0 0 O
T31 T32 X33 0 01 0 0 0



Thus 11 = 0, 291 = 0, 31 = 0 and z15 + 213 = 0, T9g + Ta3 = 0, w39 + w33 = 0. Thus we

have the matrix
0 T2 —12

0 T2 —T2
0 T30 —Ta3

However we must satisfy the last requirement also:

01 0| [0 219 —x12 e1 0 @2 —x2 €1
0 0 1 0 Tog —T99 €9 = 0 T32 —T32 €2
0 0 1 0 T32 —X32 €3 0 T3y —T32 €3

and thus R (TU) = {ae;} if x50 = —x39 = 0. And so our final answer is

0 T2 —T2
0 x32 —T3

0 0 0

2A) If G is a nonabelian group show that the center Z = Z (G) of G is properly contained
in an abelian subgroup of G.

Answer: Take x ¢ Z. We know there is such an x as G is nonabelian. Now consider
the group ZH where H = (x), the cyclic group generated by x. We know that ZH is a
subgroup as Z is a normal subgroup. Now we need to show that it is abelian. We know that
ZH ={zh:z€ Z and h € H}. Now take z,y € ZH. We need to show that zy = yz. We
know that zy = (21h1) (22h2) = (2120h1ha) = (2122h2h1) = 2221hohy = 29hoz1hy = yx as all
elements of H commute with each other as it is abelian and all elements of Z commute with
everything.

2B) List at least 9 groups of order 16 that are not pairwise isomorphic.
Answer: First we consider the abelian groups of a group G with |G| = 21. These groups
are thus

e, Lig D Ly, Loy © Ly, Loy ® Lig D Ly, Ly ® Ly D Ly D Lo

Thus we have 5 so far. Then we have the dihedral group of order 16, the generalized
quaternion group of order 16, Dg X Zs, Qg X Zo.

3A) Let m,n € Z\ {0,1} be distinct square free integers. Show that the rings R,, and R,
are not isomorphic.

Answer: We just consider the case when m,n = 2,3 and leave 1 as a similar exercise.
Assume that m # n. Conisder any ring homomorphism from R,, — R,. We know that
0 — 0. Also we have that 1+ 1. This is true as ¢ (1) = ¢ (1?) = p (1) ¢ (1) and thus must
be 1 or 0. Thus p(m) =@ (1 +---+1)=¢(1)+---+¢(1) =m or 0. Now we consider
the fact that ¢ (m) = ¢ (m!'/?m!/?) = ¢ (m'/?) ¢ (m'/?). The image of m'/? is of the form
a + by/n for integers a and b. Thus ¢ (m) = (a + by/n) (a + by/n) = a® + 2aby/n + b*n = m.
Thus either a or b = 0 as y/n is square free and m is an integer. If a = 0 then m = b*n but
this is not possible as b?|m and m is square free. If b = 0 then m = a® which is also not
possible. Thus they cannot be isomorphic.

3B) If D is a division ring set G = D\ {—1}. If a,b € G define a xb = ab+ a + b. Show that
* is a binary operation on G and show that (G, x*) is a group.
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Answer: To show that x is a binary operation we must show that the operation is closed
as a binary operation is a operatornametion * : G x G — G. Consider a,b € G. Then
we need to check that ab+ a + b # —1. Assume that ab+ a +b = —1. This implies that
a(b+1)+ b= —1 which implies that a (b+ 1) = =1 —b = — (b+ 1) and thus a = —1. This
is a contradiction as we have assumed that —1 ¢ G. Next we show that it is a group.

¢ ax0=0+a+0=a=0x%a and thus 0 is the identity.
e We need b such that a b= 0. Take b = (a + 1) (—a) and see that

axb = a(a+1)"" (=a)+a+(a+1)"(—a)
(a+1)(a+1)" (—=a)+a=—-a+a=0

Similarly, for b * a.
e Lastly, we show associativity:

ax(bxc) = ax(bc+b+c)=abc+ab+ac+a+bc+b+c
= abc+ac+bc+a+b+c=(ab+a+b)c+ (a+b)+c
= (axb)*c

4A) List all monic irreducible polynomials f (z) € F4 [z] that have degree 3.

Answer: We let F4 be the field with the 4 element set {0, 1,¢,¢ + 1} such that t*+¢+1 = 0.
A degree 3 polynomial is one such that 23 + ax? + bx + ¢ is irreducible with a,b,c € Fy.
Clearly ¢ # 0 or we have a reducible linear factor of x. For the others, we first eliminate
polynomials that are reducible over F5. These include

P4+t P+ttt tr+ L2t + (D)2t + () + 1,
R e N N A S N A N I L R R () A A
Pttt ()2 o+t

If f is irreducible over Fy [z] then Fy [z] / (f) is a field isomorphic to Fgy. We know that any
finite field F with p" = 26 elements is the splitting field of 22" — z € F, [z]. The polynomial
x?" — x is precisely the product of all distinct polynomials in F,, [z] of degree d where d runs
through all divisors of n. This proposition can be used to produce irreducible polynomials
over [, recursively. For example the irreducible quadratics over Fy are the divisors of

ZE4—J]

z(rx—1)

which gives the single polynomial 22 4+ x + 1. Similarly, the irreducible cubics over this field

are divisors of

8 —

x(r—1)
which factors into the two cubis 2® + 2 + 1 and 2% + 22 + 1. The irreducible quartics are

given by dividing z'® — x by x (z — 1) and the irreducible quadratic 2% + x + 1 above and
then factoring into irreducible quartics:

=S+t 41

$16—l‘

x(x—1)(x2+z+1)

= (x4+x3—|—x2+x+1) (x4+x3+1) (x4—i—x+1)



Now we try to adapt this for our needs. Thus the 4 irreducible degree 1 polynomials are x,
r+ 1, z+¢ and z +t + 1 where Fy = {0,1,¢,¢t + 1} where t> +¢+ 1 =0, i.e. ¢ is a root
of 2® + z + 1. Then we see that « (z + 1) (z +t) (x +t + 1) = 2* + = (as expected). So our
degree 3 irreducibles should be

3
¥+

e B e LR S |

Thus there will be 20 irreducibles of degree 3. Now we write down some of the ones we know
for sure and then divide them out of the product.

i = @+ax+1
fo = B+tr+1
fi = @2+t+)a+1
fi = P +tr*+1
fo = 22+22+1
fo = 2 +@t+1)2*+1

Check: £, (0)=1, fi()=1, ) =3 +t+1=t(t))+t+1=t(t+1)+t+1=1and
fi(t+1) = 1. Similarly for the others. Divide these out of 2% and continue. Or maybe
there is a faster way. The final answer is:
z,x+1l,z+t,x+t+1,
24t B+t 1, e+l 2t 41,
Brt+ D+, 22 +22+ 1L, B4+ +r+t, B3+ttt + L, B b+t 4,
R (A B R R v N DN B v R R B R B S ey 2 N
Pttt + e+t Bt + (D) +t+ 1L, 23+ (E+ 1) 22 + 1,
B+ e+t B+t + ) +tr+t 2+ (E+ D)2 Htr+t+1,
B+ +t+a+t+1

4B) Suppose F' = Q (\/5) and f (z) € Q|[x] is a monic irreducible polynomial of odd degree
n. Then (clearly) f (z + v/2) is also monic and of degree n in F [z].

(a) Show that the coefficient of 2"~! in f (z + /2) is irrational.

(b) Show that f (z + v/2) is irreducible in F [z].
Answer: (a) To do this just substitute x + /2 into f and use binomial expansion theorem
and check the degree n coefficient.

(b) Prove that for a polynomial f (x) that any linear shift f (ax +b) for a,b € F, the
field you are in is an automorphism. Thus as f (z) as odd degree adding something of degree
two will not make reducible. And so f (a: + \/5) is irreducible in F'.

5A) Suppose A and B are finitely generated abelian groups and that
ADApA=Bo®BaeB

Show that A = B.

Answer: By the fundamental theorem of finitely generated abelian groups we know that
AT &S Ly & ® Ly, where niniq. Thus AGAGA=Z" @7 &--- 9L, We
know that B = Z™ @ Zy,, & -+ ® Ly,,. Thus B&OB®@ B =Z" ® L3 & --- DL} . As
ADAG A= B® B® B we know that Z3™ = Z3" and thus m = n. We also know that
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we have Zy, & Zn, B ZLn, B - DB Ln, = Liny B Ly B Ly B -+ ® Zy,,. And thus by the
fundamental theorem of finitely generated abelian groups we know that the expression is
unique and thus Z,, = Z,,, and thus we have an isomorphism of A and B.

5B) Use Smith Normal Form to find all integer solutions to the system

r+y—z =
T+ 2z =

Answer: We reduce the matrix as follows:
11 -1 6
1 0 2 5 0o -1 3 -1
1 0 2 5 1 0 2 5
0 -1 3 -1 01 =3 1

Thus x =5 — 2z and y = 1 + 3z for z any integer.
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