
January 2005
Algebra Qualifying Exam

1A) If A =

 1 4 −2
4 1 −2
−2 −2 −2

 find an orthogonal matrix P so that P−1AP is diagonal.

Answer: First we note that this is a symmetric matrix and thus has real eigenvalues. Next
we compute the eigenvalues.∣∣∣∣∣∣

1− x 4 −2
4 1− x −2
−2 −2 −2− x

∣∣∣∣∣∣ = (1− x) [(1− x) (−2− x)− 4]

−4 [4 (−2− x)− 4] + (−2) [−8 + 2 (1− x)]

= −
(
x3 − 27x− 54

)
We see that −3 is a root. Thus x3 − 27x − 54 = (x− 6) (x + 3) (x + 3). Thus we have
eigenvalues 6 and −3 (mult.2). We solve for the eigenvectors and get (1, 1,−1/2), (1, 0, 2),
and (0, 1, 2). Thus6 0 0

0 −3 0
0 0 −3

 =

1 1 −1/2
1 0 2
0 1 2

A

 4/9 5/9 −4/9
4/9 −4/9 5/9
−2/9 2/9 2/9


However, we also need that P is orthogonal. In our case we need that AAT = I. Thus we
need to do the gram-schmidt orthogonalization process to our eigenvectors. Final answer:
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

1B) Let F be a field. Let β := {e1, e2, e3} be the standard basis of F 3. Let T : F 3 → F 3

be the linear transformation such that T (e1) = 0, T (e2) = e1, and T (e3) = e2 + e3. Find
all linear transformations U : F 3 → F 3 such that we have UT = 0 and the range of TU is
R (TU) = {αe1 : α ∈ F}.
Answer: As we have chosen a matrix, we may write down a linear transformation as a
matrix

Tv =

0 1 0
0 0 1
0 0 1

 e1

e2

e3


Now we need to find U : x11 x12 x13

x21 x22 x23

x31 x32 x33

0 1 0
0 0 1
0 0 1

 =

0 0 0
0 0 0
0 0 0


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Thus x11 = 0, x21 = 0, x31 = 0 and x12 + x13 = 0, x22 + x23 = 0, x32 + x33 = 0. Thus we
have the matrix 0 x12 −x12

0 x22 −x22

0 x32 −x32


However we must satisfy the last requirement also:0 1 0

0 0 1
0 0 1

0 x12 −x12

0 x22 −x22

0 x32 −x32

 e1

e2

e3

 =

0 x22 −x22

0 x32 −x32

0 x32 −x32

  e1

e2

e3


and thus R (TU) = {αe1} if x32 = −x32 = 0. And so our final answer is0 x22 −x22

0 x32 −x32

0 0 0


2A) If G is a nonabelian group show that the center Z = Z (G) of G is properly contained
in an abelian subgroup of G.
Answer: Take x /∈ Z. We know there is such an x as G is nonabelian. Now consider
the group ZH where H = 〈x〉, the cyclic group generated by x. We know that ZH is a
subgroup as Z is a normal subgroup. Now we need to show that it is abelian. We know that
ZH = {zh : z ∈ Z and h ∈ H}. Now take x, y ∈ ZH. We need to show that xy = yx. We
know that xy = (z1h1) (z2h2) = (z1z2h1h2) = (z1z2h2h1) = z2z1h2h1 = z2h2z1h1 = yx as all
elements of H commute with each other as it is abelian and all elements of Z commute with
everything.

2B) List at least 9 groups of order 16 that are not pairwise isomorphic.
Answer: First we consider the abelian groups of a group G with |G| = 24. These groups
are thus

Z16, Z8 ⊕ Z2, Z4 ⊕ Z4, Z4 ⊕ Z2 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

Thus we have 5 so far. Then we have the dihedral group of order 16, the generalized
quaternion group of order 16, D8 × Z2, Q8 × Z2.

3A) Let m,n ∈ Z\ {0, 1} be distinct square free integers. Show that the rings Rm and Rn

are not isomorphic.
Answer: We just consider the case when m,n ≡ 2, 3 and leave 1 as a similar exercise.
Assume that m 6= n. Conisder any ring homomorphism from Rm → Rn. We know that
0 7→ 0. Also we have that 1 7→ 1. This is true as ϕ (1) = ϕ (12) = ϕ (1) ϕ (1) and thus must
be 1 or 0. Thus ϕ (m) = ϕ (1 + · · ·+ 1) = ϕ (1) + · · · + ϕ (1) = m or 0. Now we consider
the fact that ϕ (m) = ϕ

(
m1/2m1/2

)
= ϕ

(
m1/2

)
ϕ

(
m1/2

)
. The image of m1/2 is of the form

a + b
√

n for integers a and b. Thus ϕ (m) = (a + b
√

n) (a + b
√

n) = a2 + 2ab
√

n + b2n = m.
Thus either a or b = 0 as

√
n is square free and m is an integer. If a = 0 then m = b2n but

this is not possible as b2|m and m is square free. If b = 0 then m = a2 which is also not
possible. Thus they cannot be isomorphic.

3B) If D is a division ring set G = D\ {−1}. If a, b ∈ G define a ∗ b = ab + a + b. Show that
∗ is a binary operation on G and show that (G, ∗) is a group.
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Answer: To show that ∗ is a binary operation we must show that the operation is closed
as a binary operation is a operatornametion ∗ : G × G → G. Consider a, b ∈ G. Then
we need to check that ab + a + b 6= −1. Assume that ab + a + b = −1. This implies that
a (b + 1) + b = −1 which implies that a (b + 1) = −1− b = − (b + 1) and thus a = −1. This
is a contradiction as we have assumed that −1 /∈ G. Next we show that it is a group.

• a ∗ 0 = 0 + a + 0 = a = 0 ∗ a and thus 0 is the identity.

• We need b such that a ∗ b = 0. Take b = (a + 1)−1 (−a) and see that

a ∗ b = a (a + 1)−1 (−a) + a + (a + 1)−1 (−a)

= (a + 1) (a + 1)−1 (−a) + a = −a + a = 0

Similarly, for b ∗ a.

• Lastly, we show associativity:

a ∗ (b ∗ c) = a ∗ (bc + b + c) = abc + ab + ac + a + bc + b + c

= abc + ac + bc + a + b + c = (ab + a + b) c + (a + b) + c

= (a ∗ b) ∗ c

4A) List all monic irreducible polynomials f (x) ∈ F4 [x] that have degree 3.
Answer: We let F4 be the field with the 4 element set {0, 1, t, t + 1} such that t2 + t+1 = 0.
A degree 3 polynomial is one such that x3 + ax2 + bx + c is irreducible with a, b, c ∈ F4.
Clearly c 6= 0 or we have a reducible linear factor of x. For the others, we first eliminate
polynomials that are reducible over F2. These include

x3 + x2 + x + 1, x3 + tx2 + tx + 1, x3 + (t + 1) x2 + (t + 1) x + 1,

x3, x3 + x2, x3 + x2 + x, x3 + x, x3 + 1, x3 + x2 + (t) x + t,

x3 + tx2 + x + t, x3 + (t + 1) x2 + x + t + 1,

If f is irreducible over F4 [x] then F4 [x] / (f) is a field isomorphic to F64. We know that any
finite field F with pn = 26 elements is the splitting field of x26 − x ∈ Fp [x]. The polynomial
xpn − x is precisely the product of all distinct polynomials in Fp [x] of degree d where d runs
through all divisors of n. This proposition can be used to produce irreducible polynomials
over Fp recursively. For example the irreducible quadratics over F2 are the divisors of

x4 − x

x (x− 1)

which gives the single polynomial x2 + x + 1. Similarly, the irreducible cubics over this field
are divisors of

x8 − x

x (x− 1)
= x6 + x5 + x4 + x3 + x2 + x + 1

which factors into the two cubis x3 + x + 1 and x3 + x2 + 1. The irreducible quartics are
given by dividing x16 − x by x (x− 1) and the irreducible quadratic x2 + x + 1 above and
then factoring into irreducible quartics:

x16 − x

x (x− 1) (x2 + x + 1)
=

(
x4 + x3 + x2 + x + 1

) (
x4 + x3 + 1

) (
x4 + x + 1

)
3



Now we try to adapt this for our needs. Thus the 4 irreducible degree 1 polynomials are x,
x + 1, x + t, and x + t + 1 where F4 = {0, 1, t, t + 1} where t2 + t + 1 = 0, i.e. t is a root
of x2 + x + 1. Then we see that x (x + 1) (x + t) (x + t + 1) = x4 + x (as expected). So our
degree 3 irreducibles should be

x43
+ x

x4 + x
= x60 + x57 + · · ·+ x3 + 1

Thus there will be 20 irreducibles of degree 3. Now we write down some of the ones we know
for sure and then divide them out of the product.

f1 = x3 + x + 1

f2 = x3 + tx + 1

f3 = x3 + (t + 1) x + 1

f4 = x3 + tx2 + 1

f5 = x3 + x2 + 1

f6 = x3 + (t + 1) x2 + 1

Check: f1 (0) = 1, f1 (1) = 1, f1 (t) = t3 + t + 1 = t (t2) + t + 1 = t (t + 1) + t + 1 = 1 and
f1 (t + 1) = 1. Similarly for the others. Divide these out of x60 and continue. Or maybe
there is a faster way. The final answer is:

x, x + 1, x + t, x + t + 1,
x3 + t, x3 + t + 1, x3 + x + 1, x3 + tx + 1,
x3 + (t + 1) x + 1, x3 + x2 + 1, x3 + x2 + x + t, x3 + x2 + x + t + 1, x3 + x2 + tx + t + 1,
x3 + x2 + (t + 1) x + t, x3 + tx2 + 1, x3 + tx2 + x + t + 1, x3 + tx2 + tx + t,
x3 + tx2 + t + 1x + t, x3 + tx2 + (t + 1) x + t + 1, x3 + (t + 1) x2 + 1,
x3 + (t + 1) x2 + x + t, x3 + (t + 1) x2 + tx + t, x3 + (t + 1) x2 + tx + t + 1,
x3 + (t + 1) x2 + (t + 1) x + t + 1

4B) Suppose F = Q
(√

2
)

and f (x) ∈ Q [x] is a monic irreducible polynomial of odd degree

n. Then (clearly) f
(
x +

√
2
)

is also monic and of degree n in F [x].

(a) Show that the coefficient of xn−1 in f
(
x +

√
2
)

is irrational.

(b) Show that f
(
x +

√
2
)

is irreducible in F [x].

Answer: (a) To do this just substitute x +
√

2 into f and use binomial expansion theorem
and check the degree n coefficient.

(b) Prove that for a polynomial f (x) that any linear shift f (ax + b) for a, b ∈ F , the
field you are in is an automorphism. Thus as f (x) as odd degree adding something of degree
two will not make reducible. And so f

(
x +

√
2
)

is irreducible in F .

5A) Suppose A and B are finitely generated abelian groups and that

A⊕ A⊕ A ∼= B ⊕B ⊕B

Show that A ∼= B.
Answer: By the fundamental theorem of finitely generated abelian groups we know that
A ∼= Zn ⊕ Zn1 ⊕ · · · ⊕ Znt where ni|ni+1. Thus A ⊕ A ⊕ A ∼= Z3n ⊕ Z3

n1
⊕ · · · ⊕ Z3

nt
. We

know that B ∼= Zm ⊕ Zm1 ⊕ · · · ⊕ Zms . Thus B ⊕ B ⊕ B ∼= Z3m ⊕ Z3
m1

⊕ · · · ⊕ Z3
ms

. As
A ⊕ A ⊕ A ∼= B ⊕ B ⊕ B we know that Z3m ∼= Z3n and thus m = n. We also know that
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we have Zn1 ⊕ Zn1 ⊕ Zn1 ⊕ · · · ⊕ Znt
∼= Zm1 ⊕ Zm1 ⊕ Zm1 ⊕ · · · ⊕ Zms . And thus by the

fundamental theorem of finitely generated abelian groups we know that the expression is
unique and thus Zni

∼= Zmi
and thus we have an isomorphism of A and B.

5B) Use Smith Normal Form to find all integer solutions to the system

x + y − z = 6

x + 2z = 5

Answer: We reduce the matrix as follows:[
1 1 −1 6
1 0 2 5

]
→

[
1 1 −1 6
0 −1 3 −1

]
→[

1 0 2 5
0 −1 3 −1

]
→

[
1 0 2 5
0 1 −3 1

]
Thus x = 5− 2z and y = 1 + 3z for z any integer.
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