January 2004 Algebra Qualifying Exam Solutions

1A) Suppose that A is an $n \times n$ matrix over \mathbb{R} and that $A^{2004} = I$. Show that A^2 is diagonalizable over \mathbb{C} .

Answer: Consider the polynomial $f(x) = x^{2004} - 1$. Let $A^2 = B$. Thus $B^{1002} = I$. As B is over \mathbb{C} we know that it has a Jordan canonical form J. Thus there is an invertible matrix P such that $B = PJP^{-1}$. Thus

$$(PJP^{-1})^{1002} = PJ^{1002}P^{-1} = I$$

and this is true if and only if J is a diagonal matrix. Thus B is diagonalizable.

1B) Prove or give a counterexample: if V is a vector space over \mathbb{C} and $T:V\longrightarrow V$ is a linear map, then T has an eigenvector.

Answer: Take $V = \mathbb{C}^{\infty}$. Take the linear transformation $(a_1, a_2, ...) \to (0, a_1, a_2, ...)$.

2A) Prove or give a counterexample: if A is an abelian group such that every finitely generated subgroup of A is cyclic, then A is cyclic.

Answer: \mathbb{Q}/\mathbb{Z}

- 2B) Suppose that P is a finite p-group, p a prime, and that P acts on a finite set S, with $p \nmid |S|$.
 - (a) Show that there exists $s \in S$ such that gs = s for all $g \in P$.
- (b) Use (a) to show that $Z(P) \neq 1$ for any nontrivial p-group (where Z(P) denotes the center).

Answer: (a) We know from the orbit stabilizer theorem that $|P| = |Stab_P(s)| |Orbit_P(s)|$. We also know that $|S| = \sum_s |Orbit_P(s)|$, where s is a representative from each orbit. As P is a p-group, we must have that $|P| = p^n$ and so each $|Orbit_P(s)| = p^k$ for some k. Then $|S| = \sum_s p^{k_i}$ and if each $k_i > 0$ then we have that $|S| = p^{k_1} + \cdots + p^{k_s} = p\left(p^{k_1-1} + \cdots + p^{k_s-1}\right)$ which is not possible as $p \nmid |S|$.

- (b) Let $S = P \setminus \{1\}$. Then use part (a).
- 3A) Suppose that $\varphi: R_1 \to R_2$ is a homomorphism of rings.
 - (a) If I_2 is an ideal in R_2 show that $\varphi^{-1}(I_2)$ is an ideal in R_1 .
- (b) Show by example that if I_1 is an ideal in R_1 that it does not necessarily follow that $\varphi(I_1)$ is an ideal in R_2 .

Answer: (a) Let $a, b \in \varphi^{-1}(I_2)$. NTS that $a - b \in \varphi^{-1}(I_2)$ and $ra \in \varphi^{-1}(I_2)$ for all $r \in R_1$. As $a, b \in \varphi^{-1}(I_2)$ then we know that $\varphi(a) \in I_2$ and $\varphi(b) \in I_2$. Thus $\varphi(a) - \varphi(b) \in I_2$ as I_2 is an ideal and so $\varphi(a - b) \in I_2$ and so $a - b \in \varphi^{-1}(I_2)$. Now take $a \in \varphi^{-1}(I_2)$. Then consider ra. $\varphi(ra) = \varphi(r) \varphi(a) \in I_2$ as $\varphi(a) \in I_2$ and I_2 is an ideal and thus $ra \in \varphi^{-1}I_2$.

- (b) Let $R_1 = \mathbb{Z}$ and $R_2 = \mathbb{Q}$. Then by the injection map φ we can consider the ideal $2\mathbb{Z}$ which is not an ideal in R_2 as the only ideals in a field F are 0 and F.
- 3B) Define a module M over $\mathbb{R}[x]$ as follows. The underlying abelian group of M is \mathbb{R}^5 and the $\mathbb{R}[x]$ -module structure is induced by the usual \mathbb{R} -vector space structure of \mathbb{R}^5 and

following action of x:

$$x \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix}$$

Determine the elementary divisors and torsion-free rank of M as an $\mathbb{R}[x]$ -module.

Answer: Note that the above matrix is in Jordan canonical form. Thus it has invariant factors $(x+1)^2$ and $(x+1)^3$. Thus we know that the module is isomorphic to $\mathbb{R}[x]/(x+1)^2 \oplus \mathbb{R}[x]/(x+1)^3$. The torsion free rank is 0 and the elementary divisors are $(x+1)^2$ and $(x+1)^3$.

4A) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ does not contain $\mathbb{Q}(\sqrt{5})$.

Answer: Assume that $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Then we can express $\sqrt{5} = a_1 + a_2\sqrt{2} + a_3\sqrt{3} + a_4\sqrt{6}$ and thus

$$5 = \left(a_1 + a_2\sqrt{2} + a_3\sqrt{3} + a_4\sqrt{6}\right)^2$$
$$= b_1 + b_2\sqrt{2} + b_3\sqrt{3} + b_4\sqrt{6}$$

where b_i are operatornametions of the a_j . Thus we have that $a_2, a_3, a_4 = 0$ and so $\sqrt{5}$ is rational which is not possible.

4B) Suppose that K is a field, $\mathbb{Q} \leq K \leq \mathbb{C}$, and $[K : \mathbb{Q}]$ is finite. Show that K contains only finitely many roots of unity.

Answer: As $K : \mathbb{Q}$ is finite, there is a finite set of irreducible polynomials that generates the extension field K. As this is a finite set with a finite set of roots, it can only contain a finite set of roots of unity.

5A) If p is a prime, set $A = (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z})$ and $B = \mathbb{Z}^3$. Determine the elementary divisors and torsion free rank of $A \otimes_{\mathbb{Z}} B$.

Answer: $A \otimes_{\mathbb{Z}} B \cong \mathbb{Z}_p \otimes_{\mathbb{Z}} B \oplus \mathbb{Z}_p \otimes_{\mathbb{Z}} B \cong (\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Z})^3 \oplus (\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{Z})^3 \cong (\mathbb{Z}_p)^6$. The elementary divisors are $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$. The torsion free rank is 0.

5B) Prove or give a counterexample: If $f:A\longrightarrow B$ is an injective homomorphism of \mathbb{Z} -modules, and C is a \mathbb{Z} -module, then the map

$$f \otimes 1$$
 : $A \otimes_{\mathbb{Z}} C \longrightarrow B \otimes_{\mathbb{Z}} C$
 $a \otimes c \longrightarrow f(a) \otimes c$

is injective.

Answer: Counter example: Consider $A = \mathbb{Z}$, $B = 2\mathbb{Z}$, and $C = \mathbb{Z}_2$. Take the map f as f(a) = 2a. Then $f(a) \otimes c = 2a \otimes c = 0$ for all a and thus has a nontrivial kernel.