
January 2003
Algebra Qualifying Exams

Sample Solutions

1A) Suppose A and B are invertible complex n × n matrices and that AB = cBA for some c ∈ C. Show
that cn = 1.
Answer: Assume that AB = cBA. Then

det (A) det (B) = det (AB) = det (cBA) = cn det (BA)
= cn det (B) det (A) = cn det (A) det (B)

and so cn = 1.

1B) Prove or give a counterexample: if k is a field, n a positive integer and A an invertible n×n matrix with
coefficients in k such that An is the identity matrix, then A is diagonalizable.
Answer: Counterexample. Consider the rational canonical form of a matrix with minimal polynomial
x2 + x + 1 over R. This has no roots over k = R and we know that a matrix is diagonalizable if and only if
its minimal polynomial has distinct roots over k. Thus look at the matrix

A =
[
0 −1
1 −1

]
Just to check we see that

A2 =
[
0 −1
1 −1

] [
0 −1
1 −1

]
=

[
−1 1
−1 0

]
A3 =

[
−1 1
−1 0

] [
0 −1
1 −1

]
=

[
1 0
0 1

]

2A) Suppose G is a group, x is an element of finite order in G, and p ∈ N is a prime.Show that x can be
written as a product x = yz, where y is a p-element and z is a p′-element, i.e. the order of y is a power of p
and the order of z is relatively prime to p. Futher show that y and z are unique.
Answer: We generalize this problem and thus the result for 2A) is a special case of this:

Let x be an element of finte order n in a group G and let n = pk1
1 · · · pks

s where pi are distinct primes.
Then x = x1x2 · · ·xs where xi is a pi-element of order pki

i and xi = xmi for some integer mi (i = 1, ..., s).
Further, if x = y1y2 · · · ys where for i, j = 1, ..., s we have that yi is a pi-element and yiyj = yjyi then yi = xi.

Proof: Define qi = n/pki
i for i = 1, ..., s. Since the gcd of all the qi is 1 we can find integers mi such that

q1m1 + · · ·+ qsms = 1. Write xi = xqimi . Then xi has order pki
i for i = 1, ..., s and x = x1 · · ·xs.

To prove uniqueness we proceed as follows. By a simple induction argument we see that the order of the
group 〈y2, y3, ..., ys〉 = 〈y2〉 · · · 〈ys〉 is relatively prime to p1 and so the intersection of this group with 〈y1〉 is
1. Since 1 = xn = yn

1 yn
2 · · · yn

s , we conclude that yn
1 = 1. Similarly, we see that the order of yi divides n for

i = 1, ..., s. It is then seen that yqimi

j equals 1 if i 6= j and equals yi if i = j. Since x = y1y2 · · · ys we find
xi = xqimi = yi for i = 1, ..., s.

2B) Find the automorphism group of S3, the symmetric group on 3 letters.
Answer: First we note that in general for a homomorphism we must have that elements of order n must
be mapped to elements of order n. We also need a map with trivial kernel. Consider G = S3 as the set
{e, (12) , (13) , (23) , (123) , (132)} = 〈(12) , (123)〉. We also know that e must be mapped to e. We also note
that for each g ∈ G the action of conjugation is an automorphism called an inner automorphism. Another
helpful proposition is that G/Z (G) is isomorphic to a subgroup of Aut (G). Therefore we know that Aut (G)
is at least as big as S3 as Z (S3) = e.
The first automorphism that we always have is the identity automorphism ϕid. This maps (12) → (12). Then
we can map (12) → (13) or (12) → (23). We can either fix (123) or send it to (132). Thus Aut (S3) ∼= S3.
In general, for n 6= 6, we have that Aut (Sn) ∼= Sn.
We prove this as follows. First we prove that the automorphism group of a group G permutes the conjugacy
classes of G, i.e. for each σ ∈ Aut (G) and each conjugacy class K of G the set σ (K) is also a conjugacy
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class of G. Then we let K be the conjugacy class of transpositions in Sn and let K′ be the conjugacy
class of any element of order 2 in Sn that is not a transposition. Prove that |K| 6= |K′|. Deduce that
any automorphism of Sn sends transpositions to transpositions. Next prove that for each σ ∈ Aut (Sn)
we must have σ : (12) → (a b2) and σ : (13) → (a b3), ..., σ : (1 n) → (a bn) for some distinct integers
a, b2, ..., bn ∈ {1, 2, ..., n}. Now show that (12) , (13) , ..., (1n) generate Sn and deduce that any automorphism
of Sn is uniquely determined by its action on these elements. Use the possible mapping choices to show that
there are at most n! automorphisms and thus Aut (Sn) = Inn (Sn) for n 6= 6.
Another way to consider this problem is to note that S3

∼= SL2 (F2). Then all possible automorphisms of
SL2 (F2) are given by SL2 (F2).

3A) Suppose R is a commutative ring with 1.
(a) Show that every maximal ideal M of R is prime.
(b) Show by example that R may have a prime ideal P that is not maximal.

Answer: (a) Let M be a maximal ideal. Then we have that R/M is simple and therefore as a ring R is
simple if and only if R is a field, we know that R/M is a field. We also know that an ideal P is prime if and
only if R/P is an integral domain. But as a field is an integral domain, we have that R/M is an integral
domain and thus M is prime.
(b) Consider the commutative ring Z [x]. We know that (x) is a prime ideal as Z [x] / (x) ∼= Z is an integral
domain. However Z is not a field and thus (x) is not a maximal ideal. It is not maximal because for example
it is contained in the maximal ideal (2, x).

3B) Prove or give a counterexample. In a commutative ring R, the subset I ⊂ R defined by I =
{
x ∈ R : x2 = 0

}
is an ideal.
Answer: Counterexample: To show it is an ideal we must show that for all x1, x2 ∈ I and r ∈ R we
have that x1 + x2 ∈ I. But as x2 = 0 we will have to look to a ring that is not an integral domain to find
a counter example. Consider the ring Z [x, y] /

(
x2, y2

)
. Then I has x ∈ I and y ∈ I but x + y ∈ I as

(x + y)2 = x2 + 2xy + y2 is not zero in the quotient.

4A) Show that f (x) = x4 + 4 is not irreducible over any field F . Determine its Galois group over over Q
and also over the field F = F8 of 8 elements.
Answer: x4 + 4 =

(
x2 + 2x + 2

) (
x2 − 2x + 2

)
which is true over any field. Then we find the roots of each

equation.
−2±

√
4− 8

2
and

2±
√

4− 8
2

Therefore over Q we only need adjoin i to Q and we get G = Z2.
Now we redo over F8. Recall that F8

∼= F2/
〈
x3 + x + 1

〉
as F8 = F23 is a degree 3 extension of F2. Thus the

elements of F8 can be given as
{
0, 1, x, x + 1, x2, x2 + 1, x2 + x + 1, x2 + x

}
subject to x3 + x + 1. Note that

F8 is a field of characteristic 2 and we have that x4 + 4 = x4 which splits completely. So the Galois group is
trivial over F8 as it splits completely.

4B) Let α = e2πi/11.
(a) Show that α is an algebraic number.
(b) Show that Q (α) is a Galois extension and find its Galois group.

Answer: (a) Consider the monic polynomial x11−1 with coefficients in Z. We have that α11−1 = e2πi−1 =
1− 1 = 0. Therefore α is an algebraic number.
(b) An extension is a Galois extension if it is both normal and separable. If f (x) ∈ F [x] is irreducible,
the f (x) is separable if and only if f ′ (x) = 0. Also, if charF = 0, then every polynomial is separable. As
f ′ (x) = 11x10 or as we note that Q has characteristic 0, we know that f (x) is a separable polynomial. We
could then easily show that it is normal. Or we note a corollary in Grove that states that if charF = 0 then
K is Galois over F if and only if K is a splitting field over F for some set of polynomials in F [x]. As Q (α)
is a splitting field for α, we have that this extension is Galois.
Lastly, we know the roots of the irreducible polynomial x10 + x9 + · · ·+ 1 are α, ..., α10. The extension is a
degree 10 extension. Thus |G| = 10. Take α → α2 as a generator. The group G is therefore cyclic of order
10 and therefore G ∼= Z10.

5A)suppose that A1 and A2 are finitely generated abelian groups, that A1 has torsion subgroup of order m1

and torsion free rank n1 and that A2 has torsion subgroup of order m2 and torsion-free rank n2. Determine
the order of the torsion subgroup and torsion-free rank of A1 ⊗Z A2.
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Answer: The fundamental theorem of finitely generated abelian groups is as follows: Let G be a finitely
generated abelian group. Then

G ∼= Zr × Zn1 × Zn2 × · · · × Zns

for some integers r, n1, ..., ns satisfying the following conditions:
(a) r ≥ 0 and nj ≥ 2 for all j and
(b) ni+1 | ni for 1 ≤ i ≤ s− 1.

Thus we can write A1 as
A1

∼= Zn1 × Za1 × · · · × Zas

such that
∏

ai = m1 and A2 as
A2

∼= Zn2 × Zb1 × · · · × Zbt

such that
∏

bj = m2. We also know

A1 ⊗Z A2
∼= Zn1 × Za1 × · · · × Zas

⊗Z Zn2 × Zb1 × · · · × Zbt

∼= Zn1 ⊗ Zn2 × Zn1 ⊗ Zb1 × · · · × Za1 ⊗ Zb1 × · · · ×
Zas

⊗ Zbt

We know that each Zn1 ⊗ Zbi = (Zbi)
n1 and Zaj ⊗ Zn2 =

(
Zaj

)n2 . We also know that Z⊗Z Z ∼= Z and so

Zn1 ⊗Z Zn2 ∼= Z× · · · × Z︸ ︷︷ ︸
n1

⊗ Z× · · · × Z︸ ︷︷ ︸
n2

∼= Z⊗Z Z× · · · × Z⊗Z Z︸ ︷︷ ︸
n1·n2

∼= Zn1·n2

Thus the free rank is n1 · n2.
For each ai, bj we know that Zai

⊗Z Zbj
∼= Z(ai,bj). And thus the size of the torsion subgroup is∏
i,j

(ai, bj) ·
∏

an2
i ·

∏
bn1
j

5B) Let R be a commutative ring and suppose that you are given R-modules and R-module homomorphisms
as in the diagram below:

0 −→ M1
f1−→ M2

f2−→ M3 −→ 0
↓h2

0 −→ N1
g1−→ N2

g2−→ N3 −→ 0

Show that
(a) If there is a homomorphism h1 : M1 → N1 that makes the diagram commute, then there is a unique

homomorphism h3 : M3 → N3 that makes it commute.
(b) If there is a homomorphism h3 : M3 → N3 that makes the diagram commute, then there is a unqiue

homomorphism h1 : M1 → N1 that makes it commute.
Answer: (a) Assume there is such an h1. Then we define h3 as g2h2f

−1
2 . We know that for all m ∈ M3

there is an m′ ∈ M2 such that f2 (m′) = m as f2 is surjective as the sequence is exact. We first show that
this map is well-defined. Assume that there is m′

1 and m′
2 ∈ M2 such that f (m′

1) = f (m′
2) = m ∈ M3. We

need to show that g2h2 (m′
1) = g2h2 (m′

2). We know that g2h2 (m′
1 −m′

2) = 0 and so m′
1 −m′

2 ∈ ker (g2h2).
As M2/ ker f2

∼= M3 we know that our map is well-defined up to something in the kernel of f2. Thus
m′

1 = m′
2 + x, where x ∈ ker f2. Thus x ∈ Im f1 and as f1 is one-to-one we take x′ such that f1 (x′) = x.

Thus g2h2 (x) = g2h2f1 (x′) = g2g1h1 (x′) = 0 as the lower sequence is exact. Thus the map will be
well-defined. Then that the diagram commutes is h3f2 = g2h2f

−1
2 f2 = g2h2.

(b) Assume there is such an h3. We define h1 as g−1
1 h2f1. We need to make sure the map is well-defined

by seeing if our choice of g−1
1 is well-defined. But as g1 is one-to-one, we know that if h2f1 ∈ Im g1 then the

inverse is well-defined. If h2f1 /∈ Im g1 then h2f1 ∈ ker g2 and so g2h2f1 6= 0 but by the commutativity with
h3 we know that g2h2f1 = h3f2f1 = h30 = 0. Thus h2f1 ∈ Im g1 and thus the map is well defined. Now we
need only check that g1h1 = h2f1 and this follows as g1h1 = g1g

−1
1 h2f1 = h2f1.
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