
January 1998
Algebra Qualifying Exams

Solutions

1A) Let F be a field, let A be an n × n matrix over F , and let w ∈ Fm be a column vector. Show that
exactly one of the following holds:

(i) Av = w for some v ∈ Fn.
(ii) There is a u in Fm such that uT A = 0 and uT w = 1 (where uT is the row vector obtained by

transposing u).
Answer: Suppose (i) is true. Then Av = w =⇒ uT (Av) = uT w =⇒

(
uT A

)
v = uT w but this is a

contradiction as
(
uT A

)
= 0 and 0v = 0 but uT w = 1.

Suppose (ii) is true. If (i) is true then (ii) is false so this contradiction forces (i) to be false.
Lastly, suppose both are false. Av = w is solvable if and only if wT u = 0 whenever AT u = 0 so one of

them must be true.

1B) Let A be the matrix

 4 5 3
−5 −10 −10
3 6 6

. Compute its characteristic polynomial, minimal polynomial,

Jordan canonical form, and rational canonical form.
Answer: The characteristic polynomial is det (A− xI) = −x3. The minimal polynomial must divide the
characteristic by the Cayley-Hamilton theorem and thus can be either x, x2, or x3. It is clearly not x. A2 6= 0
and so is not x2. Thus the minimal polynomial is x3. In this case the RCF and JCF are the same and we
have 0 0 0

1 0 0
0 1 0


2A) Let G be a group that acts on a 10-element set S. Suppose that g ∈ G has order 35. Show that for
some positive natural number n < 35, the element gn fixes all points of S.
Answer: Let σ ∈ S10 such that |σ| = m. σ can be written as a product of disjoint cycles with σ = ρ1 · · · ρm,
with |σ| = lcm (|ρ1| , ..., |ρm|) with the max σ = 2 · 3 · 5 = 30. Notice that there does not exist σ ∈ S10 such
that σ = 35 = 5 · 7 as 5 + 7 = 12. Let σ : G → S10 by ϕ (g) = ϕg. Show there is an n ∈ N with n < 35 such
that ϕ (gn) = id.

ϕ (gn) (x) = ϕgn (x) = (σg (x))n = x for all x ∈ S. Note that the order of the image is 1, 5, 7, or 35 but
cannot be 35 as we already explained.

2B) Let p and q be primes with p < q. Show that if there is a non-abelian group of order pq, then q ≡ 1 mod p.
Answer: Proof by contrapositive. Assume that q 6= 1 mod p and show that G with |G| = pq is abelian. By
Sylow theorems we know that the number of p-Sylow subgroups np ≡ 1 mod p and so there are 1 + np of
them for some n ∈ N. But as p and q are prime and q 6= 1mod p, there must be a unique p-Sylow subgroup
as 1 + np|pq. So call this subgroup P . Also there is a unique Sylow q-Subgroup by the same argument. Call
this subgroup Q. As both have prime order we know they are cyclic. So say P = (x) and Q = (y). We
also know from a corollary to Sylow’s theorems that a Sylow subgroup is unique iff it is normal as all Sylow
subgroups are conjugate. We know that P ∩Q = 1 and that x−1y−1xy ∈ P ∩Q as both are normal and so
xy = yx. Also |PQ| = |P | |Q| / |P ∩Q| = pq/1 = pq. So G = PQ = (xy) and thus G is a cyclic group and
thus Abelian.

3A) Let R be a PID. Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an increasing sequence of ideals in R. Prove that the
sequence is eventually constant, i.e. for some n, In = In+1 = In+2 = · · · .
Answer: Consider the ideal J = ∪kIk. As R is a PID we know that J = (x) for some x ∈ R. And thus as
x ∈ Im for some m we know that for all n > m we have that In = Im.

3B) Determine whether or not the rings Q [x] / (p)⊕Q [x] / (q) and Q [x] / (pq) are isomorphic where p = x4+4
and q = x4 + 23 − 4x− 4.
Answer: We note that x4 + 4 =

(
x2 + 2x + 2

) (
x2 − 2x + 2

)
. Each of these factors is irreducible as they

have non rational roots. Now note that
(
x2 + 2x + 2

) (
x2 − 2

)
= x4 + 2x3 − 4x − 4. Thus 〈p〉 ∩ 〈q〉 =〈(

x2 − 2
) (

x2 − 2x + 2
) (

x2 + 2x + 2
)〉
6= 〈pq〉. Thus the quotients cannot be isomorphic.
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4A) Let p be a prime, and let F be the field with p elements. Suppose that f ∈ F [x] is a polynomial of
degree 4 such that f and xp2 − x are relatively prime. Show that f is irreducible.
Answer: From Grove we know that xpn − x =

∏
(irreducible polynomials degree d|n). Or from Theorem

3.11 we know that [Fpn : Fp] = n and G (Fpn : Fp) ∼= Zn and Fpn is a splitting field of xpn − x over Fp.
Now as n = 2 we know that xp2 − x factors into irreducible linear and quadratic factors. Take α ∈ F ∗

p with∣∣F ∗
p

∣∣ = p−1. Then (α)p2

= ((α)p)p−α = αp−α = α−a = 0. So every linear polynomial in Fp [x] is a factor
of xpn − x so F has no linear factors as f is relatively prime to xpn − x. Now assume that f has quadratic
factors, i.e. f = gh where deg (g) = deg (h) = 2 and g and h are irreducible. However as deg xp2−x is degree
p2 and we have p linear terms and so there are p2 − p degrees worth of irreducible degree 2 polynomials.
Thus we have all possible degree 2 irreducible polynomials over Fp. Thus as f and xp2 − x are relatively
prime, we know that it has no quadratic terms.

4B) Let K be a finite extension of Q containing primitive n-th roots of unity, and let K̄ be an algebraic
closure of K. If bn = a ∈ K for some b ∈ K̄\K, then show that the extension K (b) over K is Galois with
cyclic Galois group. Give a generator of this Galois group explicitly.
Answer: We know that xn − a ∈ K [x] has a root in K̄\K, i.e. bn = a. The full set of roots is given
by b, bω, ..., bωn−1 where ω is a primitive nth root of unity. All of these are in K (b) so K (b) is a splitting
field for xn − a over K. Therefore Galois over K. Let ϕ ∈ G (K (b) : K). We know that ϕ is determined
by its action on b. So ϕ (b) = ωkb for some k ∈ (0, 1, ..., n− 1). This gives an isomorphism with Zn since
ϕkϕl (b) = ωk+lb = ωmb where m = k + l modn. Therefore G (K (b) : K) ∼= Zn. Let k ∈ Zn such that
(k, n) = 1 then (k) = Zn and therefore (ϕk) = G (K (b) : K).

5A) Let A be an n× n rational matrix. Suppose that d 6= 0 is a natural number such that the entries of the
matrices

{
AK : K ≥ 0

}
are integral multiples of 1/d. Show that for some invertible matrix C, the matrix

C−1AC has integer entries. Hint: Consider the Z-module generated by
{
Akv : k ≥ 0, v ∈ Zn

}
.

Answer: Did not have time!

5B) Let M be C3 with elements considered as column vectors. We make M into a C [x] module by having
x act by left multiplication by the matrix 1 1 0

0 1 0
0 0 i


and by having elements of C act by scalar multiplication. Find the rank and torsion of this module and give
its decomposition as a direct sum of cyclic modules.
Answer: The matrix that is given is in JCF. Thus it has only only invariant factor of (x− 1)2 (x− i). Thus
we know that M ∼= C [x] /

〈
(x− 1)2 (x− i)

〉
which has rank 0 and ?????????
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