
January 1996
Algebra Qualifying Exams

Solutions

1A) Let V be a vector space of dimension n over R and let 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn−1 ⊆ Vn = V be a
sequence of subspaces with dim Vi = i for all i. Define a group G by

G = {g ∈ GL (V ) : gVi ⊆ Vi for all i}

Give as complete a description as possible of the structure of G.
Answer: Consider any k dimensional subspace Vk. So we may choose a standard basis (or change basis if
already given one) such that we write

Vk =



b1

...
bk

0
...
0


Thus we want 

a11 · · · a1n

...
. . .

an1 ann





b1

...
bk

0
...
0


=



c1

...
ck

0
...
0


This is only possible if G is the set of upper triangular matrices.

1B) Show that every 2× 2 real matrix with all positive entries can be diagonalized over R.
Answer: A matrix is diagonalizable if and only if its minimal polynomial splits into distinct linear fac-
tors. Thus it suffices to show that its characteristic polynomial does so as a minimal polynomial al-
ways divides the characteristic polynomial. The characteristic polynomial of an arbitrary matrix {aij} =
A is det (A− xI) = x2 − (a11 + a22)x + a11a22 − a21a12. This has two distinct roots if and only if
(a11 + a22)

2 − 4 (1) (a11a22 − a21a12) > 0. We rewrite this as

a2
11 + a2

22 + 2a11a22 − 4 (1) (a11a22 − a21a12) = (a11 − a22)
2 + 4a21a12

which has (a11 − a22) ≥ 0 and 4a21a12 > 0 so the sum is > 0 and thus has distinct roots, thus distinct
eigenvalues, thus diagonalizable.

2A) Find all groups of order 33.
Answer: As 33 = 3 · 11 = pq where p and q are distinct primes and p 6= 1 mod q and q 6= 1 mod p tell us
that there is a unique Sylow 3-subgroup P and a unique Sylow 11-subgroup Q. Each of these is thus normal.
Also P and Q are cyclic as they are of prime order. So say P = 〈x〉 and Q = 〈y〉. The x−1y−1xy ∈ P ∩Q
as each is normal and P ∩Q = 1. So xy = yx and so |〈xy〉| = 33 = 3 · 11 and so G = 〈xy〉 is a cyclic group
and thus the only group of order 33 is cyclic.

2B) Either give an example of a finite group having its center of prime index or prove that such a group
cannot exist.
Answer: Proceed by contradiction. Assume a group G has center Z (G) such that [G : Z (G)] = p, a prime.
Then as Z (G) C G, G/Z (G) has order p and is thus cyclic. This implies that G is abelian. But then
[G : Z (G)] = 1, a contradiction. So it is not possible.

3A) The ring R = Q [x] /
〈
x4 − 16

〉
is a direct sum of fields. Describe the fields explicitly and determine how

many of each appears as direct summands.
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Answer: By the chinese remainder theorem, if R is a ring with 1 and Ij + Ik = R for all j 6= k then
R/ 〈I1 ∩ · · · ∩ In〉 ∼= R/I1 ⊕ · · · ⊕R/In. We first note that Q [x] is a PID. And so〈

x4 − 16
〉

=
(〈

x2 + 4
〉
∩ 〈x− 2〉 ∩ 〈x + 2〉

)
2nd we check the conditions Ij + Ik = R.

x2 + 4− (x− 2) (x + 2) = 8 ∈ U (Q) and so
〈
x2 + 4

〉
+ 〈x + 2〉 = R

x2 + 4− (x + 2) (x− 2) = 8 ∈ U (Q) and so
〈
x2 + 4

〉
+ 〈x− 2〉 = R

(x + 2)− (x− 2) = 4 ∈ U (Q) and so 〈x + 2〉+ 〈x− 2〉 = R.
So

Q [x] /
〈
x4 − 16

〉 ∼= Q [x] /
〈
x2 + 4

〉
⊕Q [x] / 〈x− 2〉 ⊕Q [x] / 〈x + 2〉

∼= Q [x] /
〈
x2 + 4

〉
⊕Q⊕Q

The last thing we do is to show that Q [x] /
〈
x2 + 4

〉 ∼= Q (i). Consider the map

Q [x] −→ Q (i) by
f (x) 7→ f (2i)

This map can easily be checked to be onto. The kernel of the map is
〈
x2 + 4

〉
. Thus we have our isomorphism

by the FHT. Thus the final answer is

Q [x] /
〈
x4 − 16

〉 ∼= Q (i)⊕Q2

We also knew that all were going to be fields as all were prime ideals and in a PID we know that prime if
and only if maximal and an ideal I is maximal if and only if R/I is a field.

3B) (i) Proof or counterexample: Every UFD is a PID.
(ii) Give an explicit example (with justification) of an irreducible polynomial of degree 100 in C [x, y].

Answer: (i) False, any UFD is also a UFD over an amount of indeterminates. So look at Z [x] and R [x, y]
where R is a UFD. In Z [x] the ideal 〈2, x〉 is not principal and 〈x, y〉 is not principal in R [x, y].

(ii) Take y100−x. This is irreducible if we look at the Eisenstein criterion by consider the polynomial ring
C [x, y] = C [x] [y]. Thus the ring for Eisenstein is C [x]. The Eisenstein criterion states that: Suppose R is a
PID (which C [x] is) and f (x) = a0 + a1x + ... + anxn is primitive (i.e. has content = 1 = GCD (a0, ..., an).
Suppose there is a prime p ∈ R such that p|ai for 0 ≤ i ≤ n − 1, but p - an and p2 - a0. Then f (x) is
irreducible. As x is prime in C [x] we have satisfied the Eisenstein criterion.

4A) Find the Galois group over Q of f (x) = x5 − 80x + 2. (Hint: How many real roots does f (x) have?).
Answer: There are 3 real roots and two complex nonreal roots as f ′ (x) = 5x4 − 80 and f ′′ (x) = 20x3

tells us that we have turning points (local max/min) as 5x4 − 80 = 0 =⇒ x4 = 16 and so x = ±2 are
critical points with (2,−126) a local min and (−2, 130) a local max. So there are 3 real roots and two strictly
complex which must be conjugate. As f (x) is irreducible by Eisenstein with p = 2, f (x) splits in some
K with [K : Q] ≥ 5 and G (K : Q) ≤ S5. As there are 2 strictly complex roots and 3 real we must have a
transitive action and so we have a 5 cycle and a two cycle. And this generates S5.

4B) Let f (x) = x4 + 5x2 + 9 ∈ Q [x]. Is f (x) irreducible? Determine its Galois group over Q.
Answer: f (x) =

(
x2 + x + 3

) (
x2 − x + 3

)
and so f is reducible. It has roots

±1±
√
−11

2

and thus a splitting field of K = Q
(√

11i
)

and as this is a degree 2 extension we have that G ∼= Z2.

5A) Proof or counterexample: Every submodule of Z as a Z-module is free.
Answer: Proof: Every submodule of Z as a Z-module is an ideal in the ring Z as a Z-module. The only
ideals are nZ and as nZ ∼=ZZ we have that every submodule is free. Another way to see this is to note that
Z is a PID and note that every submodule S of a free module R is free with rank (S) ≤ rank (R) by Grove
Theorem 2.9 on page 133.
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5B) Let A be the abelian group with presentation:

A = 〈a, b, c : 2a + 4b + 2c = 2a + 10b + 8c = 0〉

Determine the order and structure of the torsion subgroup T of A.
Answer: We quote the following theorem: Suppose R is a PID, M and N free R-modules of finite rank and
f ∈ HomR (M,N). Set E = Im (f) . Suppose there are bases {x1, ..., xn} for M and {y1, ..., ym} for N such
that the matrix representing f relative to {xi} and {yj} has the block diagonal form

B =

U 0 0
0 D 0
0 0 0



where U =

u1 0
. . .

0 us

 and D =

d1 0
. . .

0 dk

, with ui ∈ U (R) all i, 0 6= dj /∈ U (R), all j and

dj |dj+1 for 1 ≤ j ≤ k−1. Then the quotient module N/E is the direct sum of cyclic submodules R 〈yi + E〉,
s + 1 ≤ i ≤ m, its torsion submodule has invariant factors dk, ..., dk−1, .., .d1 and its rank is m− s− k.

Or a simple way of putting it, put the relations in a matrix, compute the SNF and write down the answer:(
2 4 2
2 10 8

)
→

(
2 4 2
0 6 6

)
→

(
2 0 0
0 6 6

)
→

(
2 0 0
0 6 0

)
and thus the torsion subgroup has order 12 and the group is isomorphic to Z2 ⊕ Z6 ⊕ Z.

3


