January 1995
Algebra Qualifying Exam

Solutions
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Answer: A has characteristic polynomial (5 — z) (=5 — z) — 144 = 2'? — 169 which gives eigenvalues +13.
The corresponding eigenvectors are bxq + 1229 = £13x7 and 1221 — bxo = £xo giving eigenvectors of

(o2 ) (o)

So as these eigenvectors are orthogonal already, we only need to normalize them to 1. Thus we take the

matrix )
3 2
- - M
V13 <2 3)

Which gives M~ 'AM = MTAM = (103 _(i3>

1A)If A= ( ), find an orthogonal matrix M that diagonalizes A.

1B) Suppose V is a finite dimensional vector space and T': V' — V is a linear transformation for which every
nonzero vector is an eigenvector. Prove that T is a scalar multiple of the identity transformation.

Answer: Linear means that T (av + fw) = oTv + fTw. Consider the standard basis for V as {eq,...,e,}.
Let « be an eigenvalue for (1,1,1,...,1) =e. Then T (é) = ae=ae; + -+ ae, =T (e1) +---+ T (e,) so
the eigenvalues for all basis elements are the same. Consider v € V:

T(v) = T(ﬁlel + - +ﬁnen) = 51T(61) +oe +6nT(en)

= [raey + -+ Brae, = av.

Thus the only possibility is a scalar multiple of the identity transformation.

2A) Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if
K <1 G and there is a Sylow p-subgroup P such that K NP =1 and KP = G. Show that if G has a normal
p-complement then it is unique. Give an example.
Answer: Example: Let G = S3 and K = Z3 which is normal as [G : K] = 2. There are 3 Sylow 2-subgroups
with Zgo NZ3 = 1 (if not then there is an element of order 2 in Zs, a contradiction). ZyZs = S3 because S3
has 6 elements. K is unique as there is only one Zs in Ss.

Proof: Suppose there is K, L normal p-complements, |G| = p®m with (p,m) = 1. Let P, and P, be Sylow
p-subgroups with P = rP,r~1 = P, (as all Sylow subgroups are conjugate).

1 = KNP, = 1=1"=(KNPk)"=KnP
KP, = G = G=G"=(KP)" = (Kaz™'P)" = KP,.

Thus we can talk about just P, = P. Now consider the following:

G/K = KP/K=P/(KNP)=P and
G/L = LP/L=P = |K|=|L=m

And ¢ : G — G/K takes L — 1 because G/K = P so L C K because the order of L and K are the same.

2B) Let n be a positive integer and M,, (C) be the set of n x n matrices with complex entries. If A € M, (C),
denote its determinant by A. Let GL,, (C) = {4 € M,, (C) : det A # 0} and let SL,, (C) = {A € M,, (C) : det A = 1}.
Show that GL,, (C) is a group under matrix multiplication, that SL, (C) is a normal subgroup of GL,, (C)
and identify the quotient group GL,, (C) /SL,, (C). You may use basic properties of matrices without deriving
them.
Answer: Group: Identity element is usual identity matrix I,, and has det I,, = 1.

Inverse: det A # 0 implies that A is invertible

Associativity: for all matrices A (BC) = (AB)C



Closure: det (AB) = det (A) det (B)

(ii) SL,, (C) <« GL, (C). Check that det (A~'SA) = det (A™") det (S) det (A) = det (S) and det (S) =1
and S € SL, (C).

(iii) GLy, (C) /SL,, (C): Consider the map

¢:GL,(C)—C

by ¢ (A) = det A has kernel K = {B :det(B) =1} = SL, (C). And this is onto C—{0}. So by the FHT
GL, (C)/SL, (C) = C — {0}, which is the multiplicative group of C*.

3A) Determine the Galois group (over Q) of f (z) = 2% + 323 — 222 — 6.

Answer: f (z) =2 (2?4 3) — 2 (2% + 3) = (2® — 2) (2 + 3) has roots +v/3i, V/2, w/2, and w? /2 where
w = e*™/3_ So the splitting field is Q (Z\/g, \3/5) = K. The degree of the splitting field is 6. The Galois
group is Ss.

3B) Say whether each of the following is true or false. Give a proof or counterexample.

(a) Let K be a field of characteristic 0 and let L be an extension of degree 2. Then L is Galois over K.

(b) Let K be a field of characteristic 0 and let L be an extension of degree 3. Then L is Galois over K.
Answer: (a) As K is a field of characteristic 0 and L is an extension of K, then L must be separable. Any
degree 2 extension is normal and any normal, separable extension is Galois.

(b) Take Q (\3/5) has characteristic zero. It has minimal polynomial 2% —2 but it has two complex nonreal
roots and thus is not normal over Q.

4A) A commutative ring R with 1 is said to be a local ring if it has exactly one maximal ideal M. Prove
that every element of R is either a unit or an element of M.

Answer: Let r € R. Suppose that r ¢ M. Then there does not exist I <1 R such that r € I unless I = R.
Consider (r). It cannot be contained in M because r ¢ M. So (r) "M = 0 or (r) = R. Thus the only
possibility is (r) = R.

4B) A commutative ring R is called Boolean if 2% = x for all x € R.

(a) Show that in a Boolean ring 2z = 0.

(b) Prove that in a Boolean ring then each prime ideal P # R is maximal.
Answer: (a) 2z = (z 4 ) = 2% + 22 + 22 = 222 + 2z and so 2% = 2z = 0.

(b)Consider R/P. Because P is prime ab € P (equivalently, ab = 0) imples a € P or b€ P (i.e. a =10
or b =0). So R/P is an integral domain. Now for all z € R, (v + P)(x + P) = 2>+ P =2+ P. So R/P
is also a Boolean ring in addition to being an integral domain. But we know that an integral domain has
no idempotents except 0 and possibly unity or else if 2 # 1 or 0 then 22 = x = 2 (x — 1) = 0 which is
a contradiction. Thus R/P = {0} or R/P = {0,1}. However, R/P = (0) implies that R = P which is not
true. So R/P = {0,1} which is clearly a field. Hence P is maximal.

5A) Let R be a commutative ring and A an R-module. Let
TorA={a€ A:3r#0¢€ R such that ra =0}

(a) If f: A — B is an R-homomorphism then show that f (Tor (A)) C Tor (B).

b)Ifo— A L. B % ¢ — 0is an exact sequence of R-modules, then so is 0 — TorA LN
TorB 2% TorC — 0 by the maps f and g restricted to the torsion submodules.

(c) If g : B — C is an epimorphism give an example to show that gy : TorB — TorC need not be an
epimorphism.

Answer: (a) Let a € TorA. This implies there is a nonzero r € R such that ra =0. As0= f(0) = f (ra) =
r(f (a)) we have that f (a) € TorB.

(b) f is 1-1 and therefore fr is 1-1 as all we are doing is restricting. We need to show that Im f7 = ker gr.
We know Im f = ker g as we have an exact sequence. Let b € Im fpr. Then b € TorB. There is a nonzero
r € R such that 7b = 0. Thus g (rb) = 0 and r (g (b)) = 0s0 b € ker gr. Also, if b € ker gr and g (b) = 0 then
r (g (b)) =0 and so g (rb) =0 and so rb =0 and so b € TorB.

(c) Take g : Z — Zg and Z has TorZ = {0} and g (0) = 0. But Tor (Zs) = {0,2,3,4}.

5B) True or false (proof or counterexample):



(a) Every submodule of a free module is free.

(b) R is commutative with 1; M an R-module implies that M is a finite set if and only if finitely generated
and every element is a torsion element.
Answer: (a) False, take Z, as a Z4 module. This is free as it has a basis of 1. Take M = 27Z, as a
Z-submodule. There is no linearly independent set to use for a basis. Consider the only nonzero element 2.
But we have that 22 = 4 = 0 and so 2 is linearly dependent.

(b) Take Z & Z as a ring (not even an ID as (0,1) (1,0) = (0,0). Take M = 0@ Z as a Z ® Z-module. It
is finitely generated by (0,1). All elements are torsion: (x,0) (0,a) = (0,0) for all (0,a) € M but it is not a
finite set.



