January 1995 Algebra Qualifying Exam Solutions

1A) If $A = \begin{pmatrix} 5 & 12 \\ 12 & -5 \end{pmatrix}$, find an orthogonal matrix M that diagonalizes A.

Answer: A has characteristic polynomial $(5-x)(-5-x)-144=x^{12}-169$ which gives eigenvalues ± 13 . The corresponding eigenvectors are $5x_1+12x_2=\pm 13x_1$ and $12x_1-5x_2=\pm x_2$ giving eigenvectors of

$$\begin{pmatrix} 1\\3/2 \end{pmatrix}, \begin{pmatrix} 1\\-3/2 \end{pmatrix}$$

So as these eigenvectors are orthogonal already, we only need to normalize them to 1. Thus we take the matrix

$$\frac{1}{\sqrt{13}} \begin{pmatrix} 3 & 2\\ 2 & -3 \end{pmatrix} = M$$

Which gives $M^{-1}AM = M^TAM = \begin{pmatrix} 13 & 0 \\ 0 & -13 \end{pmatrix}$

1B) Suppose V is a finite dimensional vector space and $T: V \to V$ is a linear transformation for which every nonzero vector is an eigenvector. Prove that T is a scalar multiple of the identity transformation.

Answer: Linear means that $T(\alpha v + \beta w) = \alpha Tv + \beta Tw$. Consider the standard basis for V as $\{e_1, ..., e_n\}$. Let α be an eigenvalue for $(1, 1, 1, ..., 1) = \bar{e}$. Then $T(\bar{e}) = \alpha \bar{e} = \alpha e_1 + \cdots + \alpha e_n = T(e_1) + \cdots + T(e_n)$ so the eigenvalues for all basis elements are the same. Consider $v \in V$:

$$T(v) = T(\beta_1 e_1 + \dots + \beta_n e_n) = \beta_1 T(e_1) + \dots + \beta_n T(e_n)$$

= $\beta_1 \alpha e_1 + \dots + \beta_n \alpha e_n = \alpha v$.

Thus the only possibility is a scalar multiple of the identity transformation.

2A) Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if $K \triangleleft G$ and there is a Sylow p-subgroup P such that $K \cap P = 1$ and KP = G. Show that if G has a normal p-complement then it is unique. Give an example.

Answer: Example: Let $G = S_3$ and $K = \mathbb{Z}_3$ which is normal as [G : K] = 2. There are 3 Sylow 2-subgroups with $\mathbb{Z}_2 \cap \mathbb{Z}_3 = 1$ (if not then there is an element of order 2 in \mathbb{Z}_3 , a contradiction). $\mathbb{Z}_2\mathbb{Z}_3 = S_3$ because S_3 has 6 elements. K is unique as there is only one \mathbb{Z}_3 in S_3 .

Proof: Suppose there is K, L normal p-complements, $|G| = p^{\alpha}m$ with (p, m) = 1. Let P_k and P_l be Sylow p-subgroups with $P_k^x = xP_kx^{-1} = P_l$ (as all Sylow subgroups are conjugate).

$$1 = K \cap P_k \implies 1 = 1^x = (K \cap P_k)^x = K \cap P_l$$

$$KP_x = G \implies G = G^x = (KP_k)^x = (Kxx^{-1}P_k)^x = KP_l.$$

Thus we can talk about just $P_l = P$. Now consider the following:

$$G/K = KP/K = P/(K \cap P) = P$$
 and $G/L = LP/L = P \Longrightarrow |K| = |L| = m$

And $\Phi: G \to G/K$ takes $L \to 1$ because G/K = P so $L \subset K$ because the order of L and K are the same.

2B) Let n be a positive integer and $M_n(\mathbb{C})$ be the set of $n \times n$ matrices with complex entries. If $A \in M_n(\mathbb{C})$, denote its determinant by A. Let $GL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : \det A \neq 0\}$ and let $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : \det A = 1\}$. Show that $GL_n(\mathbb{C})$ is a group under matrix multiplication, that $SL_n(\mathbb{C})$ is a normal subgroup of $GL_n(\mathbb{C})$ and identify the quotient group $GL_n(\mathbb{C})/SL_n(\mathbb{C})$. You may use basic properties of matrices without deriving them.

Answer: Group: Identity element is usual identity matrix I_n and has det $I_n = 1$.

Inverse: $\det A \neq 0$ implies that A is invertible Associativity: for all matrices A(BC) = (AB)C Closure: det(AB) = det(A) det(B)

- (ii) $SL_n(\mathbb{C}) \triangleleft GL_n(\mathbb{C})$. Check that $\det(A^{-1}SA) = \det(A^{-1}) \det(S) \det(A) = \det(S)$ and $\det(S) = 1$ and $S \in SL_n(\mathbb{C})$.
 - (iii) $GL_n(\mathbb{C})/SL_n(\mathbb{C})$: Consider the map

$$\varphi:GL_n\left(\mathbb{C}\right)\to\mathbb{C}$$

by $\varphi(A) = \det A$ has kernel $K = \{B : \det(B) = 1\} = SL_n(\mathbb{C})$. And this is onto $\mathbb{C} - \{0\}$. So by the FHT $GL_n(\mathbb{C}) / SL_n(\mathbb{C}) \cong \mathbb{C} - \{0\}$, which is the multiplicative group of \mathbb{C}^* .

3A) Determine the Galois group (over \mathbb{Q}) of $f(x) = x^5 + 3x^3 - 2x^2 - 6$. **Answer:** $f(x) = x^3(x^2 + 3) - 2(x^2 + 3) = (x^3 - 2)(x^2 + 3)$ has roots $\pm \sqrt{3}i$, $\sqrt[3]{2}$, $\omega\sqrt[3]{2}$, and $\omega^2\sqrt[3]{2}$ where $\omega = e^{2\pi i/3}$. So the splitting field is $\mathbb{Q}(i\sqrt{3}, \sqrt[3]{2}) = K$. The degree of the splitting field is 6. The Galois group is S_3 .

- 3B) Say whether each of the following is true or false. Give a proof or counterexample.
 - (a) Let K be a field of characteristic 0 and let L be an extension of degree 2. Then L is Galois over K.
- (b) Let K be a field of characteristic 0 and let L be an extension of degree 3. Then L is Galois over K. **Answer:** (a) As K is a field of characteristic 0 and L is an extension of K, then L must be separable. Any degree 2 extension is normal and any normal, separable extension is Galois.
- (b) Take $\mathbb{Q}(\sqrt[3]{2})$ has characteristic zero. It has minimal polynomial x^3-2 but it has two complex nonreal roots and thus is not normal over \mathbb{Q} .
- 4A) A commutative ring R with 1 is said to be a local ring if it has exactly one maximal ideal M. Prove that every element of R is either a unit or an element of M.

Answer: Let $r \in R$. Suppose that $r \notin M$. Then there does not exist $I \triangleleft R$ such that $r \in I$ unless I = R. Consider $\langle r \rangle$. It cannot be contained in M because $r \notin M$. So $\langle r \rangle \cap M = 0$ or $\langle r \rangle = R$. Thus the only possibility is $\langle r \rangle = R$.

- 4B) A commutative ring R is called Boolean if $x^2 = x$ for all $x \in R$.
 - (a) Show that in a Boolean ring 2x = 0.
 - (b) Prove that in a Boolean ring then each prime ideal $P \neq R$ is maximal.

Answer: (a) $2x = (x+x)^2 = x^2 + 2x + x^2 = 2x^2 + 2x$ and so $2x^2 = 2x = 0$.

(b)Consider R/P. Because P is prime $ab \in P$ (equivalently, $\bar{a}\bar{b}=\bar{0}$) implies $a \in P$ or $b \in P$ (i.e. $\bar{a}=0$ or $\bar{b}=0$). So R/P is an integral domain. Now for all $x \in R$, $(x+P)(x+P)=x^2+P=x+P$. So R/P is also a Boolean ring in addition to being an integral domain. But we know that an integral domain has no idempotents except 0 and possibly unity or else if $x \neq 1$ or 0 then $x^2 = x \implies x(x-1) = 0$ which is a contradiction. Thus $R/P = \{\bar{0}\}$ or $R/P = \{\bar{0}, \bar{1}\}$. However, $R/P = (\bar{0})$ implies that R = P which is not true. So $R/P = \{\bar{0}, \bar{1}\}$ which is clearly a field. Hence P is maximal.

5A) Let R be a commutative ring and A an R-module. Let

$$Tor A = \{a \in A : \exists r \neq 0 \in R \text{ such that } ra = 0\}$$

- (a) If $f: A \to B$ is an R-homomorphism then show that $f(Tor(A)) \subseteq Tor(B)$.
- (b) If $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is an exact sequence of R-modules, then so is $0 \longrightarrow TorA \xrightarrow{f_T} TorB \xrightarrow{g_T} TorC \longrightarrow 0$ by the maps f and g restricted to the torsion submodules.
- (c) If $g: B \to C$ is an epimorphism give an example to show that $g_T: Tor B \to Tor C$ need not be an epimorphism.

Answer: (a) Let $a \in Tor A$. This implies there is a nonzero $r \in R$ such that ra = 0. As 0 = f(0) = f(ra) = r(f(a)) we have that $f(a) \in Tor B$.

- (b) f is 1-1 and therefore f_T is 1-1 as all we are doing is restricting. We need to show that $\operatorname{Im} f_T = \ker g_T$. We know $\operatorname{Im} f = \ker g$ as we have an exact sequence. Let $b \in \operatorname{Im} f_T$. Then $b \in TorB$. There is a nonzero $r \in R$ such that rb = 0. Thus g(rb) = 0 and r(g(b)) = 0 so $b \in \ker g_T$. Also, if $b \in \ker g_T$ and g(b) = 0 then r(g(b)) = 0 and so g(rb) = 0 and so rb = 0 and rb =
 - (c) Take $g: \mathbb{Z} \to \mathbb{Z}_6$ and \mathbb{Z} has $Tor\mathbb{Z} = \{0\}$ and $g(0) = \bar{0}$. But $Tor(\mathbb{Z}_6) = \{\bar{0}, \bar{2}, \bar{3}, \bar{4}\}$.
- 5B) True or false (proof or counterexample):

- (a) Every submodule of a free module is free.
- (b) R is commutative with 1; M an R-module implies that M is a finite set if and only if finitely generated and every element is a torsion element.

Answer: (a) False, take \mathbb{Z}_4 as a \mathbb{Z}_4 module. This is free as it has a basis of $\bar{1}$. Take $M=2\mathbb{Z}_4$ as a \mathbb{Z} -submodule. There is no linearly independent set to use for a basis. Consider the only nonzero element $\bar{2}$. But we have that $\bar{2}\bar{2}=\bar{4}=\bar{0}$ and so $\bar{2}$ is linearly dependent.

(b) Take $\mathbb{Z} \oplus \mathbb{Z}$ as a ring (not even an ID as (0,1) (1,0) = (0,0). Take $M = 0 \oplus \mathbb{Z}$ as a $\mathbb{Z} \oplus \mathbb{Z}$ -module. It is finitely generated by (0,1). All elements are torsion: (*,0) (0,a) = (0,0) for all $(0,a) \in M$ but it is not a finite set.