
January 1995
Algebra Qualifying Exam

Solutions

1A) If A =
(

5 12
12 −5

)
, find an orthogonal matrix M that diagonalizes A.

Answer: A has characteristic polynomial (5− x) (−5− x)− 144 = x12 − 169 which gives eigenvalues ±13.
The corresponding eigenvectors are 5x1 + 12x2 = ±13x1 and 12x1 − 5x2 = ±x2 giving eigenvectors of(

1
3/2

)
,

(
1

−3/2

)
So as these eigenvectors are orthogonal already, we only need to normalize them to 1. Thus we take the
matrix

1√
13

(
3 2
2 −3

)
= M

Which gives M−1AM = MT AM =
(

13 0
0 −13

)
1B) Suppose V is a finite dimensional vector space and T : V → V is a linear transformation for which every
nonzero vector is an eigenvector. Prove that T is a scalar multiple of the identity transformation.
Answer: Linear means that T (αv + βw) = αTv + βTw. Consider the standard basis for V as {e1, ..., en}.
Let α be an eigenvalue for (1, 1, 1, ..., 1) = ē. Then T (ē) = αē = αe1 + · · ·+ αen = T (e1) + · · ·+ T (en) so
the eigenvalues for all basis elements are the same. Consider v ∈ V :

T (v) = T (β1e1 + · · ·+ βnen) = β1T (e1) + · · ·+ βnT (en)
= β1αe1 + · · ·+ βnαen = αv.

Thus the only possibility is a scalar multiple of the identity transformation.

2A) Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if
K C G and there is a Sylow p-subgroup P such that K ∩P = 1 and KP = G. Show that if G has a normal
p-complement then it is unique. Give an example.
Answer: Example: Let G = S3 and K = Z3 which is normal as [G : K] = 2. There are 3 Sylow 2-subgroups
with Z2 ∩ Z3 = 1 (if not then there is an element of order 2 in Z3, a contradiction). Z2Z3 = S3 because S3

has 6 elements. K is unique as there is only one Z3 in S3.
Proof: Suppose there is K, L normal p-complements, |G| = pαm with (p, m) = 1. Let Pk and Pl be Sylow

p-subgroups with P x
k = xPkx−1 = Pl (as all Sylow subgroups are conjugate).

1 = K ∩ Pk =⇒ 1 = 1x = (K ∩ Pk)x = K ∩ Pl

KPx = G =⇒ G = Gx = (KPk)x =
(
Kxx−1Pk

)x
= KPl.

Thus we can talk about just Pl = P . Now consider the following:

G/K = KP/K = P/ (K ∩ P ) = P and
G/L = LP/L = P =⇒ |K| = |L| = m

And Φ : G → G/K takes L → 1 because G/K = P so L ⊂ K because the order of L and K are the same.

2B) Let n be a positive integer and Mn (C) be the set of n×n matrices with complex entries. If A ∈ Mn (C),
denote its determinant by A. Let GLn (C) = {A ∈ Mn (C) : det A 6= 0} and let SLn (C) = {A ∈ Mn (C) : det A = 1}.
Show that GLn (C) is a group under matrix multiplication, that SLn (C) is a normal subgroup of GLn (C)
and identify the quotient group GLn (C) /SLn (C). You may use basic properties of matrices without deriving
them.
Answer: Group: Identity element is usual identity matrix In and has det In = 1.

Inverse: detA 6= 0 implies that A is invertible
Associativity: for all matrices A (BC) = (AB) C
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Closure: det (AB) = det (A) det (B)
(ii) SLn (C) C GLn (C). Check that det

(
A−1SA

)
= det

(
A−1

)
det (S) det (A) = det (S) and det (S) = 1

and S ∈ SLn (C).
(iii) GLn (C) /SLn (C): Consider the map

ϕ : GLn (C) → C

by ϕ (A) = detA has kernel K = {B : det (B) = 1} = SLn (C). And this is onto C−{0}. So by the FHT
GLn (C) /SLn (C) ∼= C− {0}, which is the multiplicative group of C∗.

3A) Determine the Galois group (over Q) of f (x) = x5 + 3x3 − 2x2 − 6.
Answer: f (x) = x3

(
x2 + 3

)
− 2

(
x2 + 3

)
=

(
x3 − 2

) (
x2 + 3

)
has roots ±

√
3i, 3

√
2, ω 3

√
2, and ω2 3

√
2 where

ω = e2πi/3. So the splitting field is Q
(
i
√

3, 3
√

2
)

= K. The degree of the splitting field is 6. The Galois
group is S3.

3B) Say whether each of the following is true or false. Give a proof or counterexample.
(a) Let K be a field of characteristic 0 and let L be an extension of degree 2. Then L is Galois over K.
(b) Let K be a field of characteristic 0 and let L be an extension of degree 3. Then L is Galois over K.

Answer: (a) As K is a field of characteristic 0 and L is an extension of K, then L must be separable. Any
degree 2 extension is normal and any normal, separable extension is Galois.

(b) Take Q
(

3
√

2
)

has characteristic zero. It has minimal polynomial x3−2 but it has two complex nonreal
roots and thus is not normal over Q.

4A) A commutative ring R with 1 is said to be a local ring if it has exactly one maximal ideal M . Prove
that every element of R is either a unit or an element of M .
Answer: Let r ∈ R. Suppose that r /∈ M . Then there does not exist I C R such that r ∈ I unless I = R.
Consider 〈r〉. It cannot be contained in M because r /∈ M . So 〈r〉 ∩ M = 0 or 〈r〉 = R. Thus the only
possibility is 〈r〉 = R.

4B) A commutative ring R is called Boolean if x2 = x for all x ∈ R.
(a) Show that in a Boolean ring 2x = 0.
(b) Prove that in a Boolean ring then each prime ideal P 6= R is maximal.

Answer: (a) 2x = (x + x)2 = x2 + 2x + x2 = 2x2 + 2x and so 2x2 = 2x = 0.
(b)Consider R/P . Because P is prime ab ∈ P (equivalently, āb̄ = 0̄) imples a ∈ P or b ∈ P (i.e. ā = 0

or b̄ = 0). So R/P is an integral domain. Now for all x ∈ R, (x + P ) (x + P ) = x2 + P = x + P . So R/P
is also a Boolean ring in addition to being an integral domain. But we know that an integral domain has
no idempotents except 0 and possibly unity or else if x 6= 1 or 0 then x2 = x =⇒ x (x− 1) = 0 which is
a contradiction. Thus R/P = {0̄} or R/P = {0̄, 1̄}. However, R/P = (0̄) implies that R = P which is not
true. So R/P = {0̄, 1̄} which is clearly a field. Hence P is maximal.

5A) Let R be a commutative ring and A an R-module. Let

TorA = {a ∈ A : ∃r 6= 0 ∈ R such that ra = 0}

(a) If f : A → B is an R-homomorphism then show that f (Tor (A)) ⊆ Tor (B).

(b) If 0 −→ A
f−→ B

g−→ C −→ 0 is an exact sequence of R-modules, then so is 0 −→ TorA
fT−→

TorB
gT−→ TorC −→ 0 by the maps f and g restricted to the torsion submodules.

(c) If g : B → C is an epimorphism give an example to show that gT : TorB → TorC need not be an
epimorphism.
Answer: (a) Let a ∈ TorA. This implies there is a nonzero r ∈ R such that ra = 0. As 0 = f (0) = f (ra) =
r (f (a)) we have that f (a) ∈ TorB.

(b) f is 1-1 and therefore fT is 1-1 as all we are doing is restricting. We need to show that Im fT = ker gT .
We know Im f = ker g as we have an exact sequence. Let b ∈ Im fT . Then b ∈ TorB. There is a nonzero
r ∈ R such that rb = 0. Thus g (rb) = 0 and r (g (b)) = 0 so b ∈ ker gT . Also, if b ∈ ker gT and g (b) = 0 then
r (g (b)) = 0 and so g (rb) = 0 and so rb = 0 and so b ∈ TorB.

(c) Take g : Z → Z6 and Z has TorZ = {0} and g (0) = 0̄. But Tor (Z6) = {0̄, 2̄, 3̄, 4̄}.

5B) True or false (proof or counterexample):
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(a) Every submodule of a free module is free.
(b) R is commutative with 1; M an R-module implies that M is a finite set if and only if finitely generated

and every element is a torsion element.
Answer: (a) False, take Z4 as a Z4 module. This is free as it has a basis of 1̄. Take M = 2Z4 as a
Z-submodule. There is no linearly independent set to use for a basis. Consider the only nonzero element 2̄.
But we have that 2̄2̄ = 4̄ = 0̄ and so 2̄ is linearly dependent.

(b) Take Z⊕ Z as a ring (not even an ID as (0, 1) (1, 0) = (0, 0). Take M = 0⊕ Z as a Z⊕ Z-module. It
is finitely generated by (0, 1). All elements are torsion: (∗, 0) (0, a) = (0, 0) for all (0, a) ∈ M but it is not a
finite set.
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