
January 1994
Algebra Qualifying Exam

Sample Solutions

1A) Find all (real) c such that the system

2x + c (c− 1) y + 3z = c + 1
−2x + c (c− 1) y − 3z = c− 1

has a solution, and find the dimension of the space of solutions if they exist.
Answer: By adding the two equations we get that 2c (c− 1) = 2c. If c = 0 then y = y, x = (1− 3z) /2,
z = z and so (x, y, z) = y (0, 1, 0)+(1/2, 0, 0)+z (−3/2, 0, 1). This is a 2-dimensional solution space. If c 6= 0
then (c− 1) y = 1. If c = 1 then we have no solution as we get 2 = 0. So if c 6= 0, then y = 1/ (c− 1). So
2x + c + 3z = c + 1 and −2x + c− 3z = c− 1. Therefore we only need satisfy 2x + 3z = 1 and so this is a
1-dimensional solution space.

1B) Find the characteristic polynomial, minimal polynomial, rational canonical form, and Jordan canonical
form of

A =

0 4 0
2 0 8
0 −1 0


Answer: We compute Det (A− xI) and get Det (A− xI) = −x3. Thus the characteristic polynomial is
−x3. The minimal polynomial must divide x3 and so is either x, x2, or x3. We check and see that A 6= 0
and A2 6= 0 and so the minimal polynomial is also x3. Thus we only have one invariant factor x3 and one

elementary divisor x3. Thus the RCF and JCF are the same and we have

0 0 0
1 0 0
0 1 0

.

2A) Suppose S is a set and the symmetric group S4 acts transitively on S. Determine all possibilities for
|S|.
Answer: There is a bijection between all possible actions of a group G on a set A with possible homomor-
phisms from G to SA. By the orbit stabilizer theorem, we know that |OrbitG (s)| = [G : StabG (s)]. For a
transitive action the size of the entire set occurs as the index of a subgroup of G. This gives us a list of
possible set sizes. The most canonical map to use is G×G/H → G/H by g1 × g2H → g1g2H and this is a
well-defined action and we can identify each of the elements of our given set with one of the cosets. This is
a transitive actions as if we want to move g2H to g3H we simply act by g3g

−1
2 . So we must find all possible

subgroups of S4. They have size 1, 2, 3, 4, 6, 8, 12, 24 and so we have corresponding indices 24, 12, 8, 6, 4, 3, 2, 1.
So we could have the size of S as all possible divisors of 24.

2B) If p ∈ Z is a prime, determine all groups of order 2p.
Answer: If p = 2 we know that the only possibilities are Z4 and V4 = Z2 × Z2. If p 6= 2 then p ≡ 1 mod 2.
Choose elements x and y in G of orders p and 2 respectively and set P = 〈x〉 and Q = 〈y〉. As p > 2, the
Sylow p-subgroup is unique and so P C G and [G : NG (Q)] = 1 or p. If [G : NG (Q)] = 1 then G = 〈xy〉 is
cyclic and G ∼= Zp. On the other hand suppose that [G : NG (Q)] = p. Then y−1xy = xn for some integers
2 ≤ n < p. So x−1xyk = xnk

if 0 < k ∈ Z and in particular y−2xy2 = xn2
and so n2 ≡ 1 mod p. So G

has generators x and y that satisfy the relation xp = y2 = 1 and y−1xy = xn for 2 ≤ n < p. This is the
presentation of a dihedral group of order 2p. So the only possibilities are Z2p or Dp or V4.

3A) Suppose R is an ID (with 1) having only finitely many ideals. Prove that R is a field. What if R is just
a commutative ring, not a domain?
Answer: As there are only a finite number of ideals, we know that R is artinian, i.e. satisfies the Descending
Chain Condition (DCC). Let 0 6= a ∈ R. Then

〈a〉 ⊇
〈
a2

〉
⊇ · · · ⊇

〈
an−1

〉
⊇ 〈an〉

where each
〈
ai

〉
is an ideal. As R is an integral domain (ID) and a 6= 0 we know that ai 6= 0. Artinian

implies that there exists an n such that 〈an〉 =
〈
an+1

〉
= ... and so an ∈

〈
an+1

〉
. So there is an r ∈ R such

that an = ran+1 and so 1 = ra and so R is a field.
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Without being an integral, it is definitely not true. Take Z4 for example as 2 has no multiplicative inverse
as it is a zero divisor.

3B) Describe all semisimple rings having 10, 000 elements.
Answer: First note that any finite division ring is a field by a theorem of Weddeburn. Also note that any
finite ring is Artinian. Thus we have a semisimple Artinian ring and thus by the Weddeburn-Artin structure
theorem we have that R is isomorphic to a direct sum of full matrix algebras over a division ring. We factor
10, 000 for possible sizes

10, 000 = 2454

The possibilities for the first term 24 is

A = M2 (F2) ,F24 ,F23 × F2, F22 × F22 , F22 × F2 × F2, or F2 × F2 × F2 × F2

The possibilities for the second term 54 is

B = M2 (F5) ,F54 ,F53 × F5, F52 × F52 , F52 × F5 × F5, or F5 × F5 × F5 × F5

Thus all possibilities are A×B. There are a total of 36 possibilities.

4A) Suppose F , K, and L are fields with F ⊆ K ⊆ L and [L : F ] finite. Either prove or give a counterexample
for each of the following 3 assertions.

(a) If L is Galois over F then L is Galois over K.
(b) If L is Galois over F then K is Galois over F .
(c) If L is Galois over K and K is Galois over F then L is Galois over F .

Answer: (a) By the FTGT we know there is a 1-1 inclusion reversing correspondence between subgroups
of the Galois group G, |G| = |Aut (F/L)| = n < ∞ and the subfields of the extension L : F . So there is a
subgroup H ≤ G such that H is the group of automorphisms of L with K as its fixed field. |Aut (L/K)| =
|H| = [L : K] so it is Galois.

(b) False take the extension Q
(
21/4, i

)
= L and K = Q

(
21/4

)
(not a normal extension as minimal

polynomial x4 − 2 does not split and has root 21/4, we are missing non-real complex roots).
(c) Take F = Q, K = Q

(
21/2

)
, and L = Q

(
21/4

)
. As both [K : F ] and [L : K] are degree 2 extensions

they must be normal. And as charQ = 0 we know that they are separable extensions. Thus they are Galois
extensions. However Q

(
21/4

)
is not Galois as the minimal polynomial x4 − 2 has 2 strictly complex roots.

4B) Suppose F and K are fields with F ⊆ K and a ∈ K is algebraic over F with [F (a) : F ] odd. Show that
F

(
a2

)
= F (a).

Answer: Let f (x) split in K ′ and g (x) in K, where g (x) = f
(
x2

)
. Then clearly K ′ ≤ K as if αi are

the roots of f (x) then ±√αi are the roots for g (x). Thus the splitting field for g (x) must be a degree 2n

extension of K ′ for some n ≥ 0. We know that

[K : Q] = [K : K ′] [K ′ : Q]
Odd = 2n · x

And this is possible if and only if n = 0 and thus K = K ′.

5A) Let M be the Z-module Z⊕ (Z/3Z). Give a precise and explicit description of the ring EndZ (M).
Answer: First we note that

End (Z⊕ (Z/3Z)) = Hom (Z⊕ (Z/3Z) , Z⊕ (Z/3Z))
∼= End (Z)⊕Hom (Z, Z/3Z)⊕Hom (Z/3Z, Z)⊕ End (ZZ/3Z, Z/3Z)
∼= Z⊕ Z3 ⊕ {0} ⊕ Z3

5B) Suppose A and B are finite abelian groups each having all Sylow subgroups cyclic; view A and B as
Z-modules. Calculate A⊗Z B and determine its Sylow subgroups.
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Answer: The fundamental theorem of finitely generated abelian groups and the fact that abelian implies
all subgroups normal implies Sylow subgroups are unique and thus

A ∼= Zp
e1
1
⊕ · · · ⊕ Zp

ek
k

B ∼= Z
q

f1
1
⊕ · · · ⊕ Z

q
fl
l

We now use the fact that we can distribute direct sums over tensors and also that Zr ⊗ Zs
∼= Z(r,s) where

(r, s) is the gcd. So for each Zp
ei
i
⊗ Z

q
fj
j

we have

Zp
ei
i
⊗ Z

q
fj
j

∼=

{
0, pi 6= qj

Z
p
min(ei,fj)
i

, pi = qj

}

Let A = {p1, ..., pk} and B = {q1, ..., ql}. Then A ∩ B = {pi1 , ..., pim
}. In the tensor product we will have

that the corresponding powers of the primes are ei1 , the minimum of the prime powers of the intersecting
pei

i and q
fj

j . Thus the Sylow subgroups have order p
ep

ip
.
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