
August 2005
Algebra Qualifying Exam

Solutions

1A) Find all matrices A 2 M2 (R) such that A4 � A2 = 12I2, where I2 2 M2 (R) is the
identity matrix.
Answer: We know thatA satis�es x4�x2�12I = 0. Thus (x2 � 4) (x2 + 3) = (x+ 2) (x� 2) (x2 + 3) =
0. Consider that the minimal polynomial of A must divide one of these. The choices are (up
to similarity) �

�2 0
0 �2

�
,
�
2 0
0 2

�
,
�
2 0
0 �2

�
,
�
0 �1
3 0

�

1B) If A =
�
13 �18
6 �8

�
�nd four square roots B for A (i.e. matrices B with B2 = A).

Answer: We �rst try to diagonalize the matrix to make easier. We compute the character-
istic polynomial

det (A� xI) = x2 � 5x+ 4 = (x� 4) (x� 1)
and so we have eigenvalues �1 = 1 and �2 = 4. Thus we need the corresponding matrix of
eigenvalues to diagonalize A.�

12 �18
6 �9

��
x1
x2

�
=

�
0
0

�
and�

9 �18
6 �12

��
y1
y2

�
=

�
0
0

�

has basis for solution of
�
3
2

�
. For �2 = 4 we have

�
2
1

�
. Thus we have that P�1 =�

3 2
2 1

�
and P =

�
�1 2
2 �3

�
. Thus we have A = P�1DP where D =

�
1 0
0 4

�
. We �nd a

square root of D as C =
�
�1 0
0 �2

�
and so (P�1CP )2 = P�1C2P = P�1DP = A. So the

for choices are the four choices of P�1CP .

Check :
�
3 2
2 1

��
1 0
0 4

��
�1 2
2 �3

�
=

�
3 8
2 4

��
�1 2
2 �3

�
=

�
13 �18
6 �8

�

2A) Suppose that G is a group and that given any x; y, and z in G then at least two of them
commute with each other. Show that G is abelian.
Answer: Given x; y; z we know that either xy = yx, xz = zx or yz = zy. Now we need to
show given arbitrary a; b 2 G that ab = ba. We know that for a; b; ab 2 G that at least two
of them commute. If a and b commute then we are done. If not assume that a commutes
with ab. Then aab = aba and thus a�1aab = a�1aba =) ab = ba. If b commutes with ab
then bab = bba =) b�1bab = b�1bba =) ab = ba.
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2B) Let G be a simple group of order 12pn, where p is a prime and n 2 N. Show that G has
order 60.
Answer: 12pn = 22 � 3 � pn.
Fact: Let G be a group whose order is equal to a product mpk; where k > 0, m is coprime

to p and m < p. Then G has a normal subgroup of order p.
Proof: Consider the number np of Sylow p-subgroups. Then np must divide mpk and it is

coprime to p. Thus npjm. But as np is congruent to 1 mod p, if np 6= 1 then np � p+1 > m,
impossible. Thus np = 1 and the unique Sylow p-subgroup P is in fact normal.
Case (i): p 6= 3 as 2 < 3 and (2; 3) = 1 so use fact above.
Case (ii): If p = 2 then 12pn = 2m � 3. Thus the number of Sylow 2-subgroups, n2 = 1

or 3. If it is 1 then the subgroup is normal and not a simple group. If n2 = 3 then we
have an action of G (by conjugation) on the three 2-Sylow subgroups. Thus we have a
homomorphism

' : G! S3

as we are permuting the three 2-Sylow subgroups. But as jGj > 22 � 3 = 12 > 6 we must
have a nontrivial kernel for '. Thus it is a normal subgroup. Thus p 6= 2.
Case (iii) p > 5. Thus jGj = 22 �3 �p. Thus there are 1; p+1; 2p+1; ::: Sylow p-subgroups.

But as p > 5 we know that p � 7 and so p+1 � 8. Thus there is only one p-Sylow subgroup
and so it is unique.
Case (iv) p = 5. Thus jGj = 60 and we know that A5 is a simple group.

3A) Decompose the group algebra F5S3 and F5Z7 into products of simple rings.
Answer: We know that F5S3 is a semisimple ring by Maschke�s theorem. We also know that
it is �nite and thus it Artinian. As a ring, it is nonabelian as the group S3 is nonabelian.
We know that the order of the ring F5S3 = 56 and thus we have that F5S3 is isomorphic to
(by the Weddeburn-Artin structure theorem) to

M2 (F5)� F5 � F5

Now we consider F7Z7. This is a commutative ring as Z7 is an abelian group. The ring
has order 77 and is isomorphic to F7� F7� F7� F7� F7� F7� F7. This is true because for
all abelian groups we have that all representations are 1-dimensional.

3B) Let R = C [�1; 1], the ring of all continuous (real) operatornametions on the interval
[�1; 1], with pointwise operations. De�ne

f (x) =

8<:
2x+ 1, if � 1 � x � �1=2
0, if � 1=2 � x � 1=2,
2x� 1, if 1=2 � x � 1.

9=;
and g (x) = jf (x)j, so f; g 2 R. Show that f jg and gjf in R, but that there is no unit u 2 R
with g = uf . (Pictures will be useful).
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Answer:

and g (x) is

If we let h (x) =

then we see that f (x) = g (x)h (x) and g (x) = f (x)h (x) however the only units in C [�1; 1]
are the constant functions and f (x) and g (x) are clearly not scalar multiples.
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4A) Show that f (x) = 2x5 � 10x+ 5 2 Q [x] is not solvable by radicals.
Answer: First we note that f (x) is irreducible by the Eisenstein criterion with p = 5.
Thus we know that Gal (f (x)) � S5, a transitive subgroup of the symmetric group on 5
letters. We also note that f 0 (x) = 10x4 � 10 and thus f 0 (x) = 10 (x2 � 1) (x2 + 1) and thus
f 0 (1) = f 0 (�1) = 0. We also have that f 00 (x) = 40x3. Thus at �1 we have a relative max
and at 1 a relative min. f (0) = 5, f (�2) = �64 + 20 + 5 < 0, f (�1) = �2 + 10 + 5 > 0,
f (1) = 2 � 10 + 5 < 0 and f (2) > 0. Thus we have 3 real roots and 2 complex (nonreal)
roots. We know that there is a 5-cycle as the action of the Galois group on the roots is
transitive. We also have a 2-cycle. Thus we can generate S5 from these two actions. Thus
G �= S5 which is not solvable as it has A5 as a an index 2 subgroup which is simple.

4B) Let p be a rpime. Let d, m, and n 2 N. Let f (x) 2 Fpm [x] be a monic, irreducible
polynomial over Fpm of degree d. Show that f (x) is an irreducible polynomial over Fpmn if
and only if g.c.d.fn; dg = 1.
Answer:

5A) Compute the elementary divisors and the invariant factors of the F3 [x]-module M :=
F3 [x] = (f (x)), where f (x) := (x2 + �1)

2
(x2 + �2)

2
(x3 + x2 + x+ �1)

2. We recall that F3 =
f�0; �1; �2g is the �eld with 3 elements.
Answer: The invariant factors are (x2 + �1)2 (x2 + �2)2 (x3 + x2 + x+ �1)2 and the elementary
divisors are (x2 + �1)2, (x2 + �2)2, and (x3 + x2 + x+ �1)2. ?????? I think ??????

5B) Show that Q
Z Q and Q
Q Q are isomorhic as Q-modules.
Answer: First we note that

a

b

 c
d
= 1
 ac

bd
2 Q
ZQ. Thus any element of Q
ZQ can be

written as 1
 p
q
. Consider the map ' : 1
 p

q
7�! 1
 p

q
. First we show this is a Q-module

homomorphism.

'

�
1
 p

q
+ 1
 r

s

�
= '

�
1
 p

q
+
r

s

�
= 1
 p

q
+
r

s

= '

�
1
 p

q

�
+ '

�
1
 r

s

�
'

�
a � 1
 p

q

�
= '

�
1
 ap

q

�
= 1
 ap

q

= a

�
1
 p

q

�
= a'

�
1
 p

q

�
The map is clearly onto as any element in Q
Q Q can be written as 1


p

q
. For one-to-one

assume that 1 
 p
q
= 1 
 r

s
=) 1 


�
p

q
� r
s

�
= 0 and this implies that

p

q
=
r

s
. Another

way to consider this is to show that they are both isomorphic to Q as done in a prior qual.
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