August 2005
Algebra Qualifying Exam

Solutions

1A) Find all matrices A € M, (R) such that A* — A% = 121,, where I, € M, (R) is the

identity matrix.

Answer: We know that A satisfies v*—22—127 = 0. Thus (22 —4) (22 +3) = (z + 2) (v — 2) (22 + 3) =
0. Consider that the minimal polynomial of A must divide one of these. The choices are (up

to similarity)
-2 0 2 0] |2 O 0 -1
0 =270 21”{0 =2{"1|3 O

13 —18 find four square roots B for A (i.e. matrices B with B2 = A).

6 -8
Answer: We first try to diagonalize the matrix to make easier. We compute the character-
istic polynomial

IB)If A =

det(A—al) =25z +4=(z—4)(z—1)

and so we have eigenvalues A\; = 1 and Ay = 4. Thus we need the corresponding matrix of
eigenvalues to diagonalize A.

(5 )(n) = (o) m
() () - (D)

has basis for solution of < 3 . For \s = 4 we have < ? ) Thus we have that P~ =

2

3 2 (-1 2 o (10

(2 1> andP—(2 _3>.Thusweha,veA—P DPWhereD—(O 4).VVeﬁnda
+1 0

square root of D as C' = 0 49

for choices are the four choices of P~1CP.
3 2 10 -1 2 3 8 -1 2
Check (2 1) (0 4) ( p —3) - (2 4) (2 —3)
(13 18
N 6 -8

2A) Suppose that G is a group and that given any z, y, and z in G then at least two of them
commute with each other. Show that G is abelian.

Answer: Given z,y, z we know that either zy = yx, xz = zx or yz = zy. Now we need to
show given arbitrary a,b € G that ab = ba. We know that for a,b,ab € GG that at least two
of them commute. If a and b commute then we are done. If not assume that ¢ commutes
with ab. Then aab = aba and thus a taab = a " 'aba = ab = ba. If b commutes with ab
then bab = bba = b 'bab = b~'bba = ab = ba.

) and so (P1CP)* = P~'C2P = P7'DP = A. So the



2B) Let G be a simple group of order 12p™, where p is a prime and n € N. Show that G has
order 60.
Answer: 12p" = 22.3 . p".

Fact: Let G be a group whose order is equal to a product mp*, where k > 0, m is coprime
to p and m < p. Then G has a normal subgroup of order p.

Proof: Consider the number n, of Sylow p-subgroups. Then n, must divide mp"* and it is
coprime to p. Thus n,|m. But as n, is congruent to 1 mod p, if n, # 1 then n, > p+1 > m,
impossible. Thus n, = 1 and the unique Sylow p-subgroup P is in fact normal.

Case (i): p# 3 as 2 < 3 and (2,3) = 1 so use fact above.

Case (ii): If p = 2 then 12p™ = 2™ - 3. Thus the number of Sylow 2-subgroups, ny = 1
or 3. If it is 1 then the subgroup is normal and not a simple group. If ny = 3 then we
have an action of G (by conjugation) on the three 2-Sylow subgroups. Thus we have a
homomorphism

p:G— S

as we are permuting the three 2-Sylow subgroups. But as |G| > 2%2-3 = 12 > 6 we must
have a nontrivial kernel for ¢. Thus it is a normal subgroup. Thus p # 2.

Case (iii) p > 5. Thus |G| = 2%-3-p. Thus there are 1,p+1,2p+1, ... Sylow p-subgroups.
But as p > 5 we know that p > 7 and so p+ 1 > 8. Thus there is only one p-Sylow subgroup
and so it is unique.

Case (iv) p = 5. Thus |G| = 60 and we know that Ajs is a simple group.

3A) Decompose the group algebra F5S3; and F5Z; into products of simple rings.

Answer: We know that F5S3 is a semisimple ring by Maschke’s theorem. We also know that
it is finite and thus it Artinian. As a ring, it is nonabelian as the group S3 is nonabelian.
We know that the order of the ring F5S3; = 5 and thus we have that [F5S5 is isomorphic to
(by the Weddeburn-Artin structure theorem) to

M2 (Fg)) X Fg) X Fg,

Now we consider F;Z7. This is a commutative ring as Z; is an abelian group. The ring
has order 77 and is isomorphic to F; x F; x F; x F; x F; x F; x F;. This is true because for
all abelian groups we have that all representations are 1-dimensional.

3B) Let R = C'[—1,1], the ring of all continuous (real) operatornametions on the interval
[—1,1], with pointwise operations. Define

20 +1,if —1<z<—1/2
flx)y=¢ 0,if —1/2<x<1/2,
2r—1,if1/2 <z < 1.

and g (z) = |f (z)], so f,g € R. Show that f|g and ¢|f in R, but that there is no unit u € R
with ¢ = uf. (Pictures will be useful).



Answer:

and ¢ (x) is

If we let h(x) =

then we see that f (z) = g (z) h(z) and g (z) = f (x) h (z) however the only units in C'[-1, 1]
are the constant functions and f (x) and ¢ (x) are clearly not scalar multiples.

3



4A) Show that f (x) = 22° — 10z + 5 € Q [z] is not solvable by radicals.

Answer: First we note that f(z) is irreducible by the Eisenstein criterion with p = 5.
Thus we know that Gal (f (z)) < Ss, a transitive subgroup of the symmetric group on 5
letters. We also note that f’(z) = 10z* — 10 and thus f’ (z) = 10 (2? — 1) (2*> + 1) and thus
(1) = f'(=1) = 0. We also have that f” (z) = 4023. Thus at —1 we have a relative max
and at 1 a relative min. f(0) =5, f(—2) = —-64+20+5<0, f(—1)=-24+10+5 > 0,
f(1)=2—-10+5 < 0 and f(2) > 0. Thus we have 3 real roots and 2 complex (nonreal)
roots. We know that there is a 5-cycle as the action of the Galois group on the roots is
transitive. We also have a 2-cycle. Thus we can generate S5 from these two actions. Thus
G = S5 which is not solvable as it has As as a an index 2 subgroup which is simple.

4B) Let p be a rpime. Let d, m, and n € N. Let f (z) € Fym [z] be a monic, irreducible
polynomial over F,m of degree d. Show that f (x) is an irreducible polynomial over Fymn if
and only if g.c.d.{n,d} = 1.

Answer:

5A) Compute the elementary divisors and the invariant factors of the 3 [z]-module M :=
Fy[z] / (f (2)), where f(z) := (224 1)° (22 +2)? (23 + 2% + 2 + 1)°. We recall that Fy =
{0,1,2} is the field with 3 elements.

Answer: The 1nvar1ant factors are (22 4 1)° (x + 2) (Zx + 22 + z + 1)” and the elementary
divisors are (22 + 1)%, (#2 +2)%, and (23 + 22 4+ z + 1)°. 777227 I think 777777

5B) Show that Q ®z Q and Q ®Q Q are isomorhic as Q-modules.

Answer: First we note that 3 ® E =1 ® o e Q®z Q. Thus any element of Q ®; Q can be

written as 1 ® —. Consider the map ¢ : 1 ® N 1® —. First we show this is a Q-module

g q q
homomorphism.

T T
@(1®—+1®—) - go(l@ + >_1®1—)+—
s q q
_ ¢(1®§) (12 )

q q

ey

The map is clearly onto as any element in Q ®g Q can be written as 1 ® E. For one-to-one

S

r r r

assume that 1 ® P _q - = 1® <1—? — —) = 0 and this implies that p_T Another
q S q S q S

way to consider this is to show that they are both isomorphic to Q as done in a prior qual.



