August 2004
Algebra Qualifying Exam

1A) Let T : C® — C5 be a linear transformation whose characteristic polynomial is —z°+x3.
List all possible Jordan canonical forms of 7T

Answer: We know that — (z° — %) = —23 (22 — 1) = —23 (x + 1) (x — 1). The first possi-
bility is that of the matrix with invariant factor z* (z + 1) (z — 1). This is

0100 O
0010 O
0 00O0 O
0001 O
0000 -1

The other possible invariant factors are x, 22 (z + 1) (z — 1) and z,z,z (z + 1) (z — 1)

010 0 O 000 O O
000 0 O 000 0 O
000 O Ofand |O OO0 0 O
000 -120 000 —-10
000 0 1 000 0 1

1B) Suppose A is a real symmetric matrix with the property that each negative eigenvalue
has even multiplicity. Show that A has a (real) square root B (i.e. B? = A).

Answer: Consider the Jordan Canonical Form of A which exists as a real symmetric matrix
has real eigenvalues. It is diagonalizable and even more so can be done with an orthogonal
basis. (Look up this proof in standard linear algebra text). Thus the JCF of this matrix is
diagonal. So all we need to show is that a 2n x 2n diagonal block has a root (which is just
a scalar multiple of the identity, cl5, where ¢ < 0). We reduce the problem even further by

noting that for ¢ < 0 we have that cls, = \/\c\z (—15,). Thus we need to find a square root

e o 2]=0 50

In the 4 x 4 case we have that

-1 0 0 0 0 -1 0 O 0 -1 0 O
o -1 0 Of (1 0 0 O 1 0 0 0
o 0 -1 0| [0 0O O —=1{|0 0O 0 —1
o 0 0 -1 0 0 1 O 0 0 1 O

And thus we take a matrix with n diagonal blocks of [(1) _01} )

2A) Prove that a group of order 1806 has a normal subgroup of order 903.
Answer: First we factor 1806 = 2-3-7-43 Let L, P,Q, R be the Sylow p-subgroups of G
for I, p,q,r = 2,3,7 and 43 respectively.



By the Sylow Theorems, there is only one Sylow 43-subgroup (Note 43k + 1 divides 2-3 -7
and so k = 0), so R is normal.
Then We prove that LR, PR, QR are subgroups of G as follows:
Fact: f A< G and B <G then ANB <A and AB <.
Solution: Obviously AN B < A. To prove its normality, let « € A, x € AN B. Then
ara~t € B as B < G. Trivially, ara™' € A. Thus, for all a € A and x € AN B we have
axa* € ANBandso ANB < A. To prove AB < G let a and a; € A, b,b; € B. Then
(ab) (ayby) ™" = abbyta;t € AB because (bb7 ") art = a7 by for some by € B.

Thus if we have a subgroup of order 903 then it is normal by the following:
Fact: Any index two subgroup is normal.
Proof: Let H < G such that [G: H] = 2. If a ¢ H then by hypothesis G = H U aH and
AHNH = 0. Also, G = HU Ha with HaN H = (). Thus, aH = Ha, a ¢ H. But clearly
aH = Ha for all a € H. Thus for all g € G, gH = Hg proving that H is normal in G.

Okay, these are nice facts, to use for another day, but 301 is not prime as I have recently
learned. Now consider the following facts: For references see Dummitt Foote p.107 (ed II)
or Grove Thm 5.4:

(1) Suppose K < G. Then G is solvable if and only if both K and G/K are solvable.

(Grove)
(2) The finite group G is solvable if and only if for every divisor n of |G| such that

G
(n, |—’> = 1, G has a subgroup of order n. (Due to P. Hall, generalization of Sylow).
n

We know that the Sylow 43-subgroup S is normal in G and is solvable as it is abelian.
Now consider G/S. The order of G/S is 42. We show this is solvable. Consider that in
G/S the Sylow T7-subgroup is unique and thus normal and as abelian is solvable. Thus
(G/S) /Sylow T has size 6. And any group of size 6 is solvable. So working backwards we
know that S and G/S are solvable and so G is solvable.

1
Conisder (903, %) = 1 and thus G has a subgroup of order 903. It is normal by

above argument for index 2. (This is the hammer to smash an ant technique)

Another way to consider this problem is as follows: We know that n43 = 1 and so
Syl (43) < G. Now consider the Sylow 7-subgroup. Then n; = 1,8, 15,22,29,36, ..., 7Tk + 1.
We also know that n7]2-3-7-43. If n; = 1 then Syl (7) < G and so Syl (3) - Syl (7) < G as
Syl (7) is normal and thus as Syl (43) is normal we have Syl (3) - Syl (7) - Syl (43) < G. If
n7 # 1 then the only other possibility is n; = 43. Thus we know that [G : N¢ (Syl (7))] = 43,
the index of the normalizer of the Sylow 7-subgroup in G. Thus |Ng (Syl (7))| = 42. Thus
as Ng < G we know that there is a Sylow 3-subgroup subgroup, Syl (3) < Ng (Syl(7)).
Thus we know that Syl (3) Syl (7) < G (Grove Theorem 2.6 Isomorphism theorem). Thus
there is a subgroup of Size 21 in G, call it Q. Thus as R = Syl (43) < G we have that
QR = RQ < G. As |QR| =903 it is a normal subgroup.

2B) List up to isomorphism, all the abelian groups of order 9. For any two such groups G
and Gy, determine the order of the group Hom (G, G2).
Answer: By the fundamental theorem of finite abelian groups, there are two groups (up to

isomorphism) of order 9
Zg and Zg D Zg



For Hom (Zg, Zg) we need only consider possible images of a generator 1. We can have the

we know that Hom (Zg, Z3 ® Z3) = Hom (Zy, Z3) & Hom (Zg, Z3).We have that 1 — (0, 0),
1—(0,1),1— (1,0), 1 — (1,1), 1 — (0,2), 1 — (2,0), 1 — (2,1), 1 — (1,2), 1 — (2,2).
The order of the group is nine, or we see that |Hom (Zg,Z3)| = 3 and so we also know that
it is 3-3 = 9. Thus |Hom (Zg,Zs ® Zs)| = 9. For Hom (Z3 © Zs3,Zy) = Hom (Z3,Zy) ®
Hom (Zs,Zg) we have to send the generator of Z3 to an element of order 3 in Zg. The only
choices are 0,3, and 6. Thus |Hom (Zs3,Ze)| = 3 and thus |Hom (Zs & Z3,Ze)| = 9. Lastly,
we have that
Hom (Zs & Zs, Ty ® Z3) = Hom (Zs, Zs3)"*

Thus the order is 3*. Another way to think of this last one is all 2 x 2 matrices over Zs of
which there are 81.

3A) Let S be a subring of R with unit. We assume that for any x € S there is € > 0 such
that SN (x —e,x +¢) = {x}. Show that S is Z.

Answer: Suppose there is a y € S such that y ¢ S. Consider [y] = N € S. Then
N—yeSand N—y < 1. Forany k € Z we have (N —y)* € S. Given any & > 0 there is
a k such that (N —y)* < e. Let # € S. Assume we are given ¢ > 0. There is a k such that
t—(N—y)e(@x—ex+e) Thus SN (z —e,x +¢) # {2} and we have a contradiction.

3B) Let R be a commutative ring with 1 that satisfies the descending chain condition for
ideals. Show that every element of R is either a unit or a zero divisor. (Hint: If not, choose
r € R such that r is neither a unit nor a zero divisor, and with (r) minimal in that respect.
Consider (r?).)

Answer: Take any nonzero r € R. Consider the descending chain or ideal

(r)2(r*) 2 2(")

We know there is some n such that for all £ > n we have (r") = <7’k> and more specifically
that (r™) = (r"*1). Assume that r is not a zero divisor. Then we have that 7" = ar™™! for
some a € R. Thus as r is not a zero divisor we get that 1 = ar and thus we have found an
inverse for r.

4A) Determine the Galois group of the following polynomial f (z) = 2% +z + 1.

Answer: If we reduce f () mod 2 then we see that f(0) = f (1) = 1 and know that f is
irreducible. Next we note that f’(z) = 322 + 1 and so has no local maximum or minimum.
Therefore there is only one real zero and two nonreal complex roots. Therefore we have a
two cycle and a three cycle and therefore generate all of Sj.

4B) Let K be the splitting field of the polynomial z* — 3 over Q. Prove that [K : Q] = 8 and
K is generated by by a single root « of the polynomial. Then show that the Galois group
Gal (K/Q) is non-abelian.

Answer: First we note that 2* — 3 is irreducible by the Eisenstein criterion with p = 3.
We know that v/3 is a root of the polynomial as (\4/5)4 —3=0. We know that Q (\4/5) has

[Q (\4/3) : (@] =4. Over Q ((75), we have that
et —3 = <$2—\/§)<$2+\/§)
= (x—i—\4/§) (x—(4/§> (m—l—z(l/g) <$—Z\3/Z>

3



Thus the splitting field is Q (\73, 2) and has degree
o()-a(#)][a(#9) ] -4

We also note that 2% — 3 has two real and two nonreal complex roots. One element of the
Galois group is complex conjugation. Another is the 4 cycle of all of the roots. However, the
complex conjugation does not commute with the 4 cycle. The group is isomorphic to Dy,
the dihedral group of order 8.

5A) Let S = Rz, vy, z] and let M be the ideal of S generated by x,y, z. Show that M is not
a free S-module. Can M be generated by two elements?

Answer: First we note that if M is free the basis would have size at least 2. For if b is
a basis for M then we have that f(z,y,2)b =z and g (x,y,2)b = y and h(z,y,2)b = z.
As z is an irreducible polynomial this is only possible for b = z and h(z) = 1 (or scalar
multiples). But then it is not possible to write f (z)z = x. Thus the basis must be at least
of size two. Thus if it has size > 2 then we know that there are fi (x,y, z) and f5 (x,y, 2), ...
such that M = 5" = (f1) R® (f2) R® -+ but we know that (f1) N (f2) # 0 as fofi € (f1)

and f1f2 € (f2).

5B) Decompose the abelian group with presentation
A= {(a,b,c:4a+8b+ 12¢ = 8a — 4b + 16¢ = 0)

into a product of cyclic groups.
Answer: We use the relations and do a smith normal form computation.

4 8 12 408 12\
8§ —4 16 0 —20 -8
40 0 _ (40 0
0 —20 -8 0 -8 —20
40 0\ _ (400)__
0 8 20 08 4
400 _ (400
04 8 040

Thus G = Z4 ® 74 P 7 as it has one free generator.



