
August 2003
Algebra Qualifying Exam

Solutions

1A) Let V be a vector space, W ⊂ V a subspace. Prove or give a counterexample: if
T : V → V is a linear transformation such that

• T (w) = w for all w ∈ W and

• T (v + W ) = v + W for all v ∈ V ,

then T is the identity map.
Answer: Counter example. Consider the map with standard basis that maps (0, 1) → (0, 1)
and (1, 0) → (1, 1). Take w = Span {(0, 1)}. Then (a, b) → (a, a + b) = a (1, 1) + b (0, 1).

1B) If A =

(
−8 18
−6 13

)
find a square root for A, i.e. find a matrix B such that B2 = A.

Answer: We will attempt to diagonalize the matrix, D = P−1AP , then find B such that
B2 = D and then PBP−1 will be a root for A. First we compute the characteristic polynomial
of A. det (A− xI) = x2 − 5x + 4 = (x− 1) (x− 4) and thus we have eigenvalues 1, 4. The
corresponding eigenvectors are solutions of[

−9 18
−6 12

] [
x1

x2

]
=

[
0
0

]
and

[
−12 18
−6 9

] [
x1

x2

]
=

[
0
0

]

We get t (2, 1)T and s (3, 2)T . Thus P =

[
2 3
1 2

]
and P−1 =

[
2 −3
−1 2

]
. Just to check (as

any diagonalizable matrix is diagonal with its eigenvalues as the entries on the diagonal) we
compute P−1AP = D :[

2 −3
−1 2

](
−8 18
−6 13

) [
2 3
1 2

]
=

[
2 −3
−4 8

] [
2 3
1 2

]
=

[
1 0
0 4

]
= D

For a square root of D we can take B =

[
±1 0
0 ±2

]
. As problem asks for one, we take just

the positive ones. Thus PBP−1 is a root of A as (PBP−1)
2

= PBP−1PBP−1 = PB2P−1 =
PDP−1 = A. Thus take[

2 3
1 2

] [
1 0
0 2

] [
2 −3
−1 2

]
=

[
2 6
1 4

] [
2 −3
−1 2

]
=

[
−2 6
−2 5

]

Check:

[
−2 6
−2 5

] [
−2 6
−2 5

]
=

[
−8 18
−6 13

]
2A) A group G is called a CA-group if the centralizer CG (x) is abelian if 1 6= x ∈ G. Write
G∗ for G\ {1}. Suppose that G is a CA-group.
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(a) Show that the relation ˜ defined by x˜y if and only if xy = yx is an equivalence
relation on G∗.

(b) If K is an equivalence class in G∗ show that K ∪ {1} is a subgroup of G.
Answer: (a) xx = xx so x˜x. Assume x˜y then xy = yx = xy and so y˜x. Now assume
that x˜y and y˜z. Then if xy = yx and yz = zy then y is in the centralizer of x, z is in the
centralizer of y and vice versa. Thus it is immediate that xz = zx and thus x˜z.

(b) To show that K ∪ {1} is a subgroup we must show that for x, y ∈ K ∪ {1} we have
that xy−1 ∈ K ∪{1}. Assume that xy ∈ K ∪{1}. We show that xyz = zxy will give us that
zxy−1 = xy−1z.

zxy−1 = zxyy−1y−1

= xyzy−1y−1

= xyy−1y−1z

= xy−1z

2B) An inner automorphism of a group G is an automorphism of the form x → gxg−1 for
some g ∈ G. Show that every automorphism of S3 (the symmetric group on 3 letters) is an
inner automorphism.
Answer: x → gxg−1 is clearly an automorphism and thus G/Z (G) is isomorphic to a
subgroup of S3. As Z (S3) = 1, we know that S3 is isomorphic to a subgroup of S3. Thus
it has size at least 6. To be an automorphism we must send two cycles to two cycles. S3

is generated by the two cycles (12), (13), and (2, 3). Thus the only choice we have to send
(12) is one of three places, then (13) to two of the remaining and thus the image of (2, 3) is
determined. Thus |Aut (S3)| ≤ 6 and thus Aut (S3) ∼= S3 and the only isomorphisms were
given as inner automorphisms.

3A) Let R be a commutative ring. We say R is noetherian if every ideal in R is finitely
generated.

(a) Show that R is noetherian if and only if the ideals in R satisfy the ascending chain
condition.

(b) Do the ideals in a noetherian ring satisfy the descending chain condition? Prove or
give a counter example.
Answer: (a) Assume that R has every ideal is finitely generated. Consider the ascending
chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

Let

J =
∞⋃
i=1

Ii

Note first that J is an ideal as it is an ascending chain of ideals. J is finitely generated by say
x1, ..., xn by assumption. As xi ∈ J for all i, each i lies in one of the ideals in the chain, say
Iji

. Let m = max {j1, ..., jn}. Then xi ∈ Im for all i so the ideal they generate is contained
in Im, i.e. J ⊆ Im. This implies that Mm = N = Mk for all k ≥ m which proves the ACC.
(b) Take the ring of integers Z. This is a noetherian ring. However consider the descending
chain of ideals 2Z ⊇ 4Z ⊇ 8Z ⊇ ... ⊇ 2nZ ⊇ · · · . This never terminates and thus does not
satisfy the DCC (it is not artinian).
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3B) Show that no principal ideal in the polynomial ring Z [x] can be a maximal ideal.
Answer: Assume that I is a principal ideal in Z [x], say I = (f (x)). If deg f > 0 then
clearly p /∈ (f (x)) and thus (f (x)) ⊂ (f (x) , p) 6= Z [x]. If deg f = 0 then say that f is the
constant n. Then Z [x] / (n) ∼= Zn [x] which is clearly not a field and thus not a maximal
ideal.

4A) If f (x) = x3− 17 ∈ Q [x] show that the Galois group of f (x) over Q is solvable but not
abelian.
Answer: First note that f is irreducible by the Eisenstein criterion with p = 17. Thus G
is a transitive subgroup of S3. One root that we have is 171/3 which is a degree 3 extension.
What is missing are 3rd roots of unity. This is a degree 2 extension. Thus Q

(
171/3, i

)
is a

degree 3 · 2 = 6 extension and thus G ∼= S3. The group is nonabelian as (12) (123) = (23) 6=
(13) = (123) (12).
Now recall the definition of solvable. A group is called solvable if there is a chain of subgroups

1 = G0 C G1 C G2 C · · ·C Gs = G

such that Gi+1/Gi is abelian for i = 0, 1, ..., s−1. (Or you can use the commutator definition
in Grove).
We have that A3 C S3 (as it is index 2) and as A3 has size 3 it is abelian and thus have the
sequence 1 C A3 C S3.

4B) Let L/Q be a Galois extension with Galois group G, and let H be a subgroup of G. Let
F be the fixed field of H. Show that there is a one-to-one correspondence between subfields
of L which are isomorphic to F and conjugates of H in G.
Answer: If the intermediate field F corresponds to the subgroup H and σ is any auto-
morphism in G, then the field σF = {σ (x) : x ∈ F} corresponds to the conjugate subgroup
σHσ−1. For this reason σF is called a conjugate subfield of F .

Proof: The fixed field of σHσ−1 is the set of all x ∈ L such that στσ−1 (x) = x for every
τ ∈ H. Thus {

x ∈ L : σ−1 (x) ∈ F (H)
}

= σ (F (H)) .

5A) Let R be a commutative ring and let M and N be R-modules. Show that there is a
natural isomorphism of R-modules

EndR (M ⊕N) ∼= EndR (M)⊕HomR (M, N)⊕HomR (N, M)⊕ EndR (N)

and give a structure on the right hand side that makes this into an isomorphism of rings.
Answer: We first prove that HomR (L, M ⊕N) ∼= HomR (L, M)⊕HomR (L, N) and then
similarly it is true that HomR (M ⊕N, L) ∼= HomR (M, L) ⊕ HomR (N, L) and then use
L = M⊕N . Let π1 : M⊕N → M be the natural projection from M⊕N to M and similarly
π2 be the natural projection to N . If f ∈ HomR (L, M ⊕N) then the compositions π1◦f and
π2◦f give elements in HomR (L, M) and HomR (L, N), respectively. This defines a map from
HomR (L, M ⊕N) to HomR (L, M)⊕HomR (L, N). You can verify for yourself that this is
an R-module homomorphism. Conversely, given f1 ∈ HomR (L, M) and f2 ∈ HomR (L, N) ,
define the map f ∈ HomR (L, M ⊕N) by f (d) = (f1 (d) , f2 (d)). This defines a map
from HomR (L, M) ⊕ HomR (L, N) to HomR (L, M ⊕N) that can be checked to see is a
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homomorphism inverse to the map above, proving the isomorphism. Similarly we do the
exact same thing to show that

HomR (M ⊕N, L) ∼= HomR (M, L)⊕HomR (N, L)

Using both of these we see that

HomR (M ⊕N, M ⊕N) ∼= HomR (M ⊕N, M)⊕HomR (M ⊕N, N)
∼= HomR (M, M)⊕HomR (N, M)⊕HomR (M, N)⊕HomR (N, N)
∼= EndR (M)⊕HomR (M, N)⊕Hom (N, M)⊕ EndR (N)

To make this a ring isomorphism (using the fact that our ring is commutative) we simply
define multiplication as composition of our maps.

5B) Let R = Z [x] and let M be the ideal 〈3, x〉 in R viewed as an R-module. Show that M
is not a free R-module.
Answer: Assume that M is a free R-module. Thus M has a basis. Assume that we pick a
basis in 〈3, x〉 of f . It is clear that there is some r1, r2 ∈ R such that r1f = 3 and r2f = x.
However f must have degree 1 and also be divisible by 3. This would implie that f = 3g
for some g ∈ Z [x] and therefore r23g = x which is not possible as 3 is not a unit in Z.
Thus a basis must have size at least 2. Assume that b1 and b2 are in the basis. Then
a1b1 + a2b2 = 3 and a′1b1 + a′2b2 = x for some a1, a

′
1, a2, a

′
2 ∈ R. Thus a1xb1 + a2xb2 = 3x and

3a′1b1 + 3a2b2 = 3x and thus (a1x− 3a′1) b1 + (a2x− 3a2) b2 = 0. We need to show that one
of the coefficients is not zero. Assume that a1x = 3a′1. Then a1 is a multiple of 3 as x does
not divide 3 and 3 is prime in Z [x]. Using a degree and divisibility argument show that one
of the two is not zero.
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