
August 2002
Algebra Qualifying Exam

Sample Solutions

1A) Give a concrete example of a real matrix A such that A5 = I and A is not diagonalizable over R. Show
that A is diagonalizable over C.
Answer: We know that A5 − I = 0 and thus the minimal polynomial of A must divide x5 − 1. As
x5 − 1 = (x− 1)

(
x4 + x3 + x2 + x + 1

)
, we know that the matrix corresponding to the rational canonical

form of x4 + x3 + x2 + x + 1 will have A5 = 1 but will not be diagonalizable as a matrix is diagonalizable if
and only if its minimal polynomial factors into distinct linear terms. Thus we take

A =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1


If we consider A over C then we know that x4+x3+x2+x+1 factors into linear terms as (x− ω)

(
x− ω2

) (
x− ω2

) (
x− ω3

)
for ω a primitive nth root of unity. Therefore the matrix is diagonalizable.

1B) Let V be a vector space over a field K, with a non-degenerate bilinear pairing

〈, 〉 : V × V → K.

(a) Show that for any linear map A : V → V , there is a unique linear map A∗ : V → V such that
〈Av,w〉 = 〈v,A∗w〉 for all v, w ∈ V . The map A∗ is called adjoint of A with respect to the pairing 〈, 〉.
(b) Suppose that V = Kn for some positive integer n. Describe all non-degenerate pairings on V with the
property that, for all linear maps A : V → V , the matrix for the adjoint of A with respect to the pairing is
the transpose of the matrix for A.
Answer: Let K be a field and V our vector space. A K-bilinear pairing on V × V is a map

f : V × V → K

having the following properties: For each v ∈ V , the map

v 7→ f (w, v)

is K-linear and for each w ∈ V the map
w 7→ f (w, v)

is K-linear. We now just write 〈v, w〉 f or 〈v, w〉 to denote f (v, w). If v ∈ V we write v ⊥ w if 〈v, w〉 = 0.
Similarly for any subset S ⊆ V we define v ⊥ S if v ⊥ w for all w ∈ S. We then say that v is perpendicular
to S. We let S⊥ consist of all elements of V which are perpendicular to S. It is obviously a subspace of V .
We define perpendicularity on the other side in the same way. We define the kernel of f to be V ⊥. We say
that f is nondegenerate if the kernel is zero. We now denote L (V,K) the set of all bilinear maps of V × V
to K. It is clear that this set is also a vector space, addition of maps being the usual one, and also the
multiplication of maps by elements of K.

The form f gives rise to a linear map

ϕf : E → HomK (V,K)

such that
ϕf (v) (w) = f (v, w) = 〈v, w〉 ,

for all v, w ∈ V . We call HomK (V,K) the dual vector space of V and denote it by V ∗. We have an
isomorphism

L (V,K) ↔ HomK (V,HomK (V,K))

given by f 7→ ϕf , its inverse being defined in the natural way: If

ϕ : V → HomK (V,K)
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is a linear map, we let f be such that
f (v, w) = ϕ (v) (w) .

We often say that f is non-singular if ϕf is an isomorphism, in other words if our bilinear pairing can be
used to identify V with V ∗. We now have an isomorphism

EndK (V ) 7→ L (V,K)

depending on the fixed non-singular bilinear map f : V × V → K.
Let A ∈ EndK (V ) be a linear map of V to itself. Then the map

(v, w) 7→ 〈Av,w〉 = 〈Av,w〉f

is bilinear and in this way we associate linearly with each A ∈ EndK (V ) a bilinear map in L (V, F ).
Conversely, let h : V ×V → K be bilinear. Given v ∈ V the map hv : V → K such that hv (w) = h (v, w)

is linear and is in the dual space V ∗. By assumption, there exists a unique element v′ ∈ V such that for all
w ∈ V we have

h (v, w) = 〈v′, w〉

It is clear that the association v 7→ v′ is a linear map of V into itself. Thus with each bilinear map V ×V → K
we have associated a linear map V → V .

Then it follows that the mappings described in the previous paragraphs are inverse isomorphisms between
EndK (V ) and L (V,R). They do depend on the given f .

Now we get as a result of all of the above with A : V → V linear and (v, w) 7→ 〈Av,w〉 its associated
bilinear map. There exists a unique linear map

At : V → V

such that
〈Av,w〉 =

〈
v,Atw

〉
for all v, w ∈ K.

(b) I think it is just the standard inner product.

2A) Give a concrete example of each of the following:
(a) A group whose commutator subgroup is strictly contained in its center.
(b) A group whose center is strictly contained in its commutator subgroup.
Answer: (a) Consider any abelian group G. Then we know that 〈G〉 = 1. However for any abelian group
G we know that Z (G) = G and 1 < G.
(b) Consider S3 (or any symmetric group). We know that Z (S3) = 1 (all symmetric group Sn, n ≥ 3 are
centerless). The commutator subgroup 〈S3〉 = A3. Note that for the Dihedral group of order 8 we have that
the commutator subgroup has order two and so does the center. They are actually the same and so it is not
an example.

2B) Suppose that G is a finite group that acts faithfully and transitively on a finite set S. If Ga = StabG (a),
a ∈ S, show that there does not exist nontrivial N C G with N ≤ Ga.
Answer: Recall that a group action of G acting on S is a mapping from G × S → S with (x, s) → xs
which satisfies (a) (xy) s = x (ys) and 1Gs = s for all x, y ∈ G and s ∈ S. If a group G acts faithfully on
a finite set S then we know that ϕ : G → Perm (S) is a monomorphism. Another way of considering this
is if we define the kernel of the action as the set of elements of G that act trivially on every element of A
({g ∈ G : ga = a for all a ∈ S}). The action acts faithfully if the kernel is trivial. If G acts transitively on a
set S then for any s, t ∈ S we can find a g ∈ G such that gs = t. Another way to think of a transitive action
is that there is only one orbit.
We first prove the following fact: StabG (xs) = xStabG (s) x−1.

StabG (xs) = {g ∈ G : gxs = xs}. Let g ∈ StabG (xs). Then gxs = xs and thus x−1gxs = s and thus
g ∈ xStabG (s) x−1. Now take g′ ∈ xStabG (s)x−1 thus x−1g′xs = s and so g′xs = xs and so g′ ∈ StabG (xs).
As G is transitive, for all s, t ∈ S there is a g ∈ G such that gs = t. Now assume that there is an N C G
with N ≤ Ga. Take n1 6= 1 ∈ N . Thus n1 ∈ StabG (s). Thus n1a = a. Take any arbitrary t ∈ S. Thus
ga = t and from our previous fact we know that StabG (t) = gStabG (a) g−1 and so n1t = t as n1 = gn2g

−1
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for some n2 ∈ N as N is normal. Thus the action is not faithful as we have found n1 ∈ G where n1a = a for
all a ∈ S.

3A) If R is a ring and a, b ∈ R are both nonzero and both are not zero divisors show that a and b have the
same additive order.
Answer: Consider a, b 6= 0 with ab 6= 0 and ba 6= 0. Without loss of generality assume that the order of a
is m and b is n with m ≤ n. Then

n (ab) = ab + · · ·+ ab = a (b + · · ·+ b) = a (nb) = 0.

Thus we know that n | m and so m = n.

3B) Let R be a commutative ring with 1, and suppose that there is exactly one maximal ideal in R. Show
that every element of R not in the maximal ideal is a unit.
Answer: Let M the maximal ideal and x ∈ R \ M . Consider the ideal generated by x, 〈x〉. Then as M is
maximal, we have either that 〈x〉 ⊆ M or 〈x〉 = R. We know that 〈x〉 is not in M as x /∈ M . Thus 〈x〉 = R
and thus x must be a unit.

4A) (a) Let a and b be nonzero rational numbers. Prove that Q (
√

a) = Q
(√

b
)

if and only if there exists a

rational c such that a = bc2.
(b) Let K = Q

(√
2,
√
−3,

√
5
)
. Prove that K does not contain a square root of −1. [Hint: Use Galois theory

and part (a)].
Answer: (a) If b has a square root in Q then Q

(√
b
)

= Q and so also a has to have a square root in

Q then we have a c such that a = bc2. So assume a and b do not have square roots in Q. Assume that
Q (
√

a) = Q
(√

b
)
. This implies that

√
a ∈ Q

(√
b
)
. Thus we can write

√
a = q1 + q2

√
b for qi ∈ Q. Thus

a =
(
q1 + q2

√
b
)2

= q2
1 + 2q1q2

√
b + q2

2b. Thus this is only a rational number if q1 or q2 = 0. If q2 = 0 then

a = q2
1 which is not possible as a does not have a square root. So q1 = 0 and we have a = q2

2b and take
q2 = c. Similarly in the other direction.

(b) By considering all possible subfields and seeing that Q
(√

2
)
6= Q

(√
−3

)
6= Q

(√
5
)

by using (a) we
need to have Q

(√
2
)

= Q
(√
−1

)
, etc. But just use (a) and it is not possible.

4B) Suppose that K is a field of characteristic p > 0 and F = K (t), the field of rational operatornametions
in an indeterminate t. Set f (x) = x2p − txp + t ∈ F [x].
(i) Show that f (x) is irreducible in F [x].
(ii) Let s be a root of xp− t ∈ F [x], set E = F (s), and let L be a splitting field for f (x) over E. Show that
[L : E] ≤ 2.
Answer: (i) As t is an indeterminate, we know that t is prime in F . Thus by the Eisenstein criterion
with p = t we have that f is irreducible. (ii) As f is irreducible we know that [L : F ] ≤ (2p)!. Note that
f (x) = g

(
x2

)
for g (x) = xp − tx + t. As g is irreducible in F [x], we know that f splits over the splitting

field for g over in a degree 2 extension as the roots of g
(
x2

)
are ±√αi for αi the roots of g (x). As xp − t is

also irreducible in F [x] we know that if α is a root then so is any α + a for a ∈ F . So we know that g (x)
splits over F (α). Thus it is clear that [L : E] ≤ 2.

5A) Determine a Z-module monomorphism f : Z2 −→ Z4. Show that 1 ⊗ f : Z2 ⊗Z Z2 → Z2 ⊗Z Z4 is the
zero map but that Z2 ⊗Z Z2 6= 0 and Z2 ⊗Z Z4 6= 0.
Answer: Consider the map 0̄ → 0̄ and 1̄ → 2̄, i.e. f (x) = 2x. We show that this is a Z-module
homomorphism.

f (x + y) = 2 (x + y) = 2x + 2y = f (x) + f (y) and
f (a · x) = 2 (a · x) = ax + ax = a (x + x) = a (2x) = a · f (x) for a ∈ Z

Now we compute the map 1⊗ f .

(1⊗ f) (x⊗ y) = x⊗ 2y = 2x⊗ y = 0⊗ y = 0
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However we know that Z2 ⊗Z Z2
∼= Z2 and Z2 ⊗Z Z4

∼= Z2. In general we have that Zm ⊗ Zn
∼= Z(m,n). We

prove it in the simple case of Z2 ⊗Z Z2. Consider the map

ϕ : Z2 → Z2 ⊗Z Z2 by x → 1⊗ x

1-1: Assume that ϕ (x) = ϕ (y). Then 1⊗ x = 1⊗ y =⇒ 1⊗ (x− y) = 0 and thus x− y = 0 and so x = y.
For onto, assume that you have x ⊗ y. Just take f (x) as f (x) = 1 ⊗ x and this is all we have as only
possibilities are 1⊗ 1 or 0⊗ 1 = 1⊗ 0 = 0⊗ 0.

5B) Let A be the abelian group generated by x1, x2, x3, x4 and x5 subject to the relations

x2 − x1 = x3 − x2 = x4 − x3 = x5 − x4 = x1 − x5.

Show that A contains an element of exact order 5.
Answer: This is equivalent to

−2x1 + x2 + x5 = −x1 − x2 + x3 + x5 = −x1 − x3 + x4 + x5 = −x1 − x4 + 2x5 = 0

We write this down in the 4× 5 matrix as follows:
−2 1 0 0 1
−1 −1 1 0 1
−1 0 −1 1 1
−1 0 0 −1 2

 −→


1 −2 0 0 1
−1 −1 1 0 1
0 −1 −1 1 1
0 −1 0 −1 2

 −→


1 −2 0 0 1
0 −3 1 0 2
0 −1 −1 1 1
0 −1 0 −1 2

 −→


1 0 0 0 0
0 −3 1 0 2
0 −1 −1 1 1
0 −1 0 −1 2

 −→


1 0 0 0 0
0 1 −3 0 2
0 −1 −1 1 1
0 0 −1 −1 2

 −→


1 0 0 0 0
0 1 −3 0 2
0 0 −4 1 3
0 0 −1 −1 2

 −→


1 0 0 0 0
0 1 0 0 0
0 0 −4 1 3
0 0 −1 −1 −2

 −→


1 0 0 0 0
0 1 0 0 0
0 0 −1 −1 2
0 0 −4 1 3

 −→


1 0 0 0 0
0 1 0 0 0
0 0 −1 −1 2
0 0 0 5 −5

 −→


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 5 −5

 −→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 5 −5

 −→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 5 0


Therefore we have that G ∼= Z⊕ Z5.
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