August 2002 Algebra Qualifying Exam Sample Solutions

1A) Give a concrete example of a real matrix A such that $A^5 = I$ and A is not diagonalizable over \mathbb{R} . Show that A is diagonalizable over \mathbb{C} .

Answer: We know that $A^5 - I = 0$ and thus the minimal polynomial of A must divide $x^5 - 1$. As $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$, we know that the matrix corresponding to the rational canonical form of $x^4 + x^3 + x^2 + x + 1$ will have $A^5 = 1$ but will not be diagonalizable as a matrix is diagonalizable if and only if its minimal polynomial factors into distinct linear terms. Thus we take

$$A = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

If we consider A over $\mathbb C$ then we know that $x^4+x^3+x^2+x+1$ factors into linear terms as $(x-\omega)(x-\omega^2)(x-\omega^2)(x-\omega^3)$ for ω a primitive n^{th} root of unity. Therefore the matrix is diagonalizable.

1B) Let V be a vector space over a field K, with a non-degenerate bilinear pairing

$$\langle,\rangle:V\times V\to K.$$

(a) Show that for any linear map $A: V \to V$, there is a unique linear map $A^*: V \to V$ such that $\langle Av, w \rangle = \langle v, A^*w \rangle$ for all $v, w \in V$. The map A^* is called *adjoint* of A with respect to the pairing \langle , \rangle .

(b) Suppose that $V = K^n$ for some positive integer n. Describe all non-degenerate pairings on V with the property that, for all linear maps $A: V \to V$, the matrix for the adjoint of A with respect to the pairing is the transpose of the matrix for A.

Answer: Let K be a field and V our vector space. A K-bilinear pairing on $V \times V$ is a map

$$f: V \times V \to K$$

having the following properties: For each $v \in V$, the map

$$v \mapsto f(w,v)$$

is K-linear and for each $w \in V$ the map

$$w \mapsto f(w, v)$$

is K-linear. We now just write $\langle v,w\rangle_f$ or $\langle v,w\rangle$ to denote f(v,w). If $v\in V$ we write $v\perp w$ if $\langle v,w\rangle=0$. Similarly for any subset $S\subseteq V$ we define $v\perp S$ if $v\perp w$ for all $w\in S$. We then say that v is perpendicular to S. We let S^\perp consist of all elements of V which are perpendicular to S. It is obviously a subspace of V. We define perpendicularity on the other side in the same way. We define the kernel of f to be V^\perp . We say that f is nondegenerate if the kernel is zero. We now denote L(V,K) the set of all bilinear maps of $V\times V$ to K. It is clear that this set is also a vector space, addition of maps being the usual one, and also the multiplication of maps by elements of K.

The form f gives rise to a linear map

$$\varphi_f: E \to Hom_K(V, K)$$

such that

$$\varphi_f(v)(w) = f(v, w) = \langle v, w \rangle,$$

for all $v, w \in V$. We call $Hom_K(V, K)$ the dual vector space of V and denote it by V^* . We have an isomorphism

$$L(V, K) \leftrightarrow Hom_K(V, Hom_K(V, K))$$

given by $f \mapsto \varphi_f$, its inverse being defined in the natural way: If

$$\varphi: V \to Hom_K(V,K)$$

is a linear map, we let f be such that

$$f(v, w) = \varphi(v)(w)$$
.

We often say that f is non-singular if φ_f is an isomorphism, in other words if our bilinear pairing can be used to identify V with V^* . We now have an isomorphism

$$End_K(V) \mapsto L(V,K)$$

depending on the fixed non-singular bilinear map $f: V \times V \to K$.

Let $A \in End_K(V)$ be a linear map of V to itself. Then the map

$$(v, w) \mapsto \langle Av, w \rangle = \langle Av, w \rangle_f$$

is bilinear and in this way we associate linearly with each $A \in End_K(V)$ a bilinear map in L(V, F).

Conversely, let $h: V \times V \to K$ be bilinear. Given $v \in V$ the map $h_v: V \to K$ such that $h_v(w) = h(v, w)$ is linear and is in the dual space V^* . By assumption, there exists a unique element $v' \in V$ such that for all $w \in V$ we have

$$h(v, w) = \langle v', w \rangle$$

It is clear that the association $v \mapsto v'$ is a linear map of V into itself. Thus with each bilinear map $V \times V \to K$ we have associated a linear map $V \to V$.

Then it follows that the mappings described in the previous paragraphs are inverse isomorphisms between $End_K(V)$ and L(V,R). They do depend on the given f.

Now we get as a result of all of the above with $A:V\to V$ linear and $(v,w)\mapsto \langle Av,w\rangle$ its associated bilinear map. There exists a unique linear map

$$A^t:V\to V$$

such that

$$\langle Av, w \rangle = \langle v, A^t w \rangle$$

for all $v, w \in K$.

- (b) I think it is just the standard inner product.
- 2A) Give a concrete example of each of the following:
- (a) A group whose commutator subgroup is strictly contained in its center.
- (b) A group whose center is strictly contained in its commutator subgroup.

Answer: (a) Consider any abelian group G. Then we know that $\langle G \rangle = 1$. However for any abelian group G we know that Z(G) = G and 1 < G.

- (b) Consider S_3 (or any symmetric group). We know that $Z(S_3) = 1$ (all symmetric group S_n , $n \geq 3$ are centerless). The commutator subgroup $\langle S_3 \rangle = A_3$. Note that for the Dihedral group of order 8 we have that the commutator subgroup has order two and so does the center. They are actually the same and so it is not an example.
- 2B) Suppose that G is a finite group that acts faithfully and transitively on a finite set S. If $G_a = Stab_G(a)$, $a \in S$, show that there does not exist nontrivial $N \triangleleft G$ with $N \leq G_a$.

Answer: Recall that a group action of G acting on S is a mapping from $G \times S \to S$ with $(x,s) \to xs$ which satisfies (a) (xy)s = x(ys) and $1_Gs = s$ for all $x,y \in G$ and $s \in S$. If a group G acts faithfully on a finite set S then we know that $\varphi: G \to Perm(S)$ is a monomorphism. Another way of considering this is if we define the kernel of the action as the set of elements of G that act trivially on every element of G ($G \in G: G = a$ for all $G \in G$). The action acts faithfully if the kernel is trivial. If $G \cap G$ acts transitively on a set $G \cap G$ that for any $G \cap G$ we can find a $G \cap G$ such that $G \cap G$ acts transitive action is that there is only one orbit.

We first prove the following fact: $Stab_G(xs) = xStab_G(s)x^{-1}$.

 $Stab_G(xs) = \{g \in G : gxs = xs\}$. Let $g \in Stab_G(xs)$. Then gxs = xs and thus $x^{-1}gxs = s$ and thus $g \in xStab_G(s)x^{-1}$. Now take $g' \in xStab_G(s)x^{-1}$ thus $x^{-1}g'xs = s$ and so g'xs = xs and so $g' \in Stab_G(xs)$. As G is transitive, for all $s, t \in S$ there is a $g \in G$ such that gs = t. Now assume that there is an $N \triangleleft G$ with $N \leq G_a$. Take $n_1 \neq 1 \in N$. Thus $n_1 \in Stab_G(s)$. Thus $n_1a = a$. Take any arbitrary $t \in S$. Thus ga = t and from our previous fact we know that $Stab_G(t) = gStab_G(a)g^{-1}$ and so $n_1t = t$ as $n_1 = gn_2g^{-1}$

for some $n_2 \in N$ as N is normal. Thus the action is not faithful as we have found $n_1 \in G$ where $n_1 a = a$ for all $a \in S$.

3A) If R is a ring and $a, b \in R$ are both nonzero and both are not zero divisors show that a and b have the same additive order.

Answer: Consider $a, b \neq 0$ with $ab \neq 0$ and $ba \neq 0$. Without loss of generality assume that the order of a is m and b is n with $m \leq n$. Then

$$n(ab) = ab + \dots + ab = a(b + \dots + b) = a(nb) = 0.$$

Thus we know that $n \mid m$ and so m = n.

3B) Let R be a commutative ring with 1, and suppose that there is exactly one maximal ideal in R. Show that every element of R not in the maximal ideal is a unit.

Answer: Let M the maximal ideal and $x \in R \setminus M$. Consider the ideal generated by x, $\langle x \rangle$. Then as M is maximal, we have either that $\langle x \rangle \subseteq M$ or $\langle x \rangle = R$. We know that $\langle x \rangle$ is not in M as $x \notin M$. Thus $\langle x \rangle = R$ and thus x must be a unit.

- 4A) (a) Let a and b be nonzero rational numbers. Prove that $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(\sqrt{b})$ if and only if there exists a rational c such that $a = bc^2$.
- (b) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{-3}, \sqrt{5})$. Prove that K does not contain a square root of -1. [Hint: Use Galois theory and part (a)].

Answer: (a) If b has a square root in \mathbb{Q} then $\mathbb{Q}\left(\sqrt{b}\right) = \mathbb{Q}$ and so also a has to have a square root in \mathbb{Q} then we have a c such that $a = bc^2$. So assume a and b do not have square roots in \mathbb{Q} . Assume that $\mathbb{Q}\left(\sqrt{a}\right) = \mathbb{Q}\left(\sqrt{b}\right)$. This implies that $\sqrt{a} \in \mathbb{Q}\left(\sqrt{b}\right)$. Thus we can write $\sqrt{a} = q_1 + q_2\sqrt{b}$ for $q_i \in \mathbb{Q}$. Thus $a = \left(q_1 + q_2\sqrt{b}\right)^2 = q_1^2 + 2q_1q_2\sqrt{b} + q_2^2b$. Thus this is only a rational number if q_1 or $q_2 = 0$. If $q_2 = 0$ then $a = q_1^2$ which is not possible as a does not have a square root. So $q_1 = 0$ and we have $a = q_2^2b$ and take $q_2 = c$. Similarly in the other direction.

- (b) By considering all possible subfields and seeing that $\mathbb{Q}\left(\sqrt{2}\right) \neq \mathbb{Q}\left(\sqrt{-3}\right) \neq \mathbb{Q}\left(\sqrt{5}\right)$ by using (a) we need to have $\mathbb{Q}\left(\sqrt{2}\right) = \mathbb{Q}\left(\sqrt{-1}\right)$, etc. But just use (a) and it is not possible.
- 4B) Suppose that K is a field of characteristic p > 0 and F = K(t), the field of rational operatornametions in an indeterminate t. Set $f(x) = x^{2p} tx^p + t \in F[x]$.
- (i) Show that f(x) is irreducible in F[x].
- (ii) Let s be a root of $x^p t \in F[x]$, set E = F(s), and let L be a splitting field for f(x) over E. Show that $[L:E] \leq 2$.

Answer: (i) As t is an indeterminate, we know that t is prime in F. Thus by the Eisenstein criterion with p=t we have that f is irreducible. (ii) As f is irreducible we know that $[L:F] \leq (2p)!$. Note that $f(x)=g(x^2)$ for $g(x)=x^p-tx+t$. As g is irreducible in F[x], we know that f splits over the splitting field for g over in a degree 2 extension as the roots of $g(x^2)$ are $\pm \sqrt{\alpha_i}$ for α_i the roots of g(x). As x^p-t is also irreducible in F[x] we know that if α is a root then so is any $\alpha+a$ for $a\in F$. So we know that g(x) splits over $F(\alpha)$. Thus it is clear that $[L:E]\leq 2$.

5A) Determine a \mathbb{Z} -module monomorphism $f: \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4$. Show that $1 \otimes f: \mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \to \mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_4$ is the zero map but that $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \neq 0$ and $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_4 \neq 0$.

Answer: Consider the map $\bar{0} \to \bar{0}$ and $\bar{1} \to \bar{2}$, i.e. f(x) = 2x. We show that this is a \mathbb{Z} -module homomorphism.

$$f\left(x+y\right)=2\left(x+y\right)=2x+2y=f\left(x\right)+f\left(y\right)$$
 and $f\left(a\cdot x\right)=2\left(a\cdot x\right)=ax+ax=a\left(x+x\right)=a\left(2x\right)=a\cdot f\left(x\right)$ for $a\in\mathbb{Z}$

Now we compute the map $1 \otimes f$.

$$(1 \otimes f)(x \otimes y) = x \otimes 2y = 2x \otimes y = 0 \otimes y = 0$$

However we know that $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \cong \mathbb{Z}_2$ and $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_4 \cong \mathbb{Z}_2$. In general we have that $\mathbb{Z}_m \otimes \mathbb{Z}_n \cong \mathbb{Z}_{(m,n)}$. We prove it in the simple case of $\mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2$. Consider the map

$$\varphi: \mathbb{Z}_2 \to \mathbb{Z}_2 \otimes_{\mathbb{Z}} \mathbb{Z}_2 \text{ by } x \to 1 \otimes x$$

1-1: Assume that $\varphi(x) = \varphi(y)$. Then $1 \otimes x = 1 \otimes y \implies 1 \otimes (x - y) = 0$ and thus x - y = 0 and so x = y. For onto, assume that you have $x \otimes y$. Just take f(x) as $f(x) = 1 \otimes x$ and this is all we have as only possibilities are $1 \otimes 1$ or $0 \otimes 1 = 1 \otimes 0 = 0 \otimes 0$.

5B) Let A be the abelian group generated by x_1, x_2, x_3, x_4 and x_5 subject to the relations

$$x_2 - x_1 = x_3 - x_2 = x_4 - x_3 = x_5 - x_4 = x_1 - x_5.$$

Show that A contains an element of exact order 5.

Answer: This is equivalent to

$$-2x_1 + x_2 + x_5 = -x_1 - x_2 + x_3 + x_5 = -x_1 - x_3 + x_4 + x_5 = -x_1 - x_4 + 2x_5 = 0$$

We write this down in the 4×5 matrix as follows:

$$\begin{bmatrix} -2 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 0 & 1 \\ -1 & 0 & -1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 1 \\ -1 & -1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 2 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & -1 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 2 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & -3 & 0 & 2 \\ 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -3 & 0 & 2 \\ 0 & 0 & -4 & 1 & 3 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 & 3 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 & 3 \\ 0 & 0 & -1 & -1 & 2 \\ 0 & 0 & 0 & 5 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 5 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \end{bmatrix}$$

Therefore we have that $G \cong \mathbb{Z} \oplus \mathbb{Z}_5$.