August 2002
Algebra Qualifying Exam
Sample Solutions

1A) Give a concrete example of a real matrix A such that A% = I and A is not diagonalizable over R. Show
that A is diagonalizable over C.

Answer: We know that A% — I = 0 and thus the minimal polynomial of A must divide z° — 1. As
2° —1=(z—1)(2* +2°+ 22+ 2+ 1), we know that the matrix corresponding to the rational canonical
form of 2* + 23 + 22 + 2 + 1 will have A% = 1 but will not be diagonalizable as a matrix is diagonalizable if
and only if its minimal polynomial factors into distinct linear terms. Thus we take

0 0 0 -1
1 0 0 -1
A= 01 0 -1
0 01 -1

If we consider A over C then we know that z*+a3+2%+a2+1 factors into linear terms as (z — w) (z — w?) (z — w?) (z — w?)
for w a primitive n** root of unity. Therefore the matrix is diagonalizable.

1B) Let V be a vector space over a field K, with a non-degenerate bilinear pairing
(,):VxV->K.

(a) Show that for any linear map A : V. — V| there is a unique linear map A* : V. — V such that
(Av,w) = (v, A*w) for all v,w € V. The map A* is called adjoint of A with respect to the pairing (,).

(b) Suppose that V = K™ for some positive integer n. Describe all non-degenerate pairings on V with the
property that, for all linear maps A : V' — V, the matrix for the adjoint of A with respect to the pairing is
the transpose of the matrix for A.

Answer: Let K be a field and V our vector space. A K-bilinear pairing on V' x V is a map

[ VxV->sK
having the following properties: For each v € V| the map
v f(w,v)

is K-linear and for each w € V' the map
wes f (w,0)

is K-linear. We now just write (v,w) ¢ or (v,w) to denote f (v,w). If v € V we write v L w if (v,w) = 0.
Similarly for any subset S C V we define v L S if v L w for all w € S. We then say that v is perpendicular
to S. We let St consist of all elements of V which are perpendicular to S. It is obviously a subspace of V.
We define perpendicularity on the other side in the same way. We define the kernel of f to be V. We say
that f is nondegenerate if the kernel is zero. We now denote L (V, K) the set of all bilinear maps of V x V
to K. It is clear that this set is also a vector space, addition of maps being the usual one, and also the
multiplication of maps by elements of K.

The form f gives rise to a linear map

¢r: E— Homg (V, K)

such that
Pr (U) (’LU) = f (an) = <U,U}>,
for all v,w € V. We call Homg (V, K) the dual vector space of V and denote it by V*. We have an

isomorphism
L(V,K) < Homg (V,Homg (V,K))

given by f — ¢y, its inverse being defined in the natural way: If

v:V — Homg (V,K)



is a linear map, we let f be such that
f(v,w) = ¢ (v) (w).

We often say that f is non-singular if ¢ is an isomorphism, in other words if our bilinear pairing can be
used to identify V' with V*. We now have an isomorphism

Endg (V) — L (V,K)

depending on the fixed non-singular bilinear map f:V xV — K.
Let A € Endg (V) be a linear map of V to itself. Then the map

(v, w) = (Av, w) = (Av,w) ;

is bilinear and in this way we associate linearly with each A € Endg (V') a bilinear map in L (V, F).
Conversely, let h : V x V — K be bilinear. Given v € V the map h, : V — K such that h, (w) = h (v, w)
is linear and is in the dual space V*. By assumption, there exists a unique element v’ € V such that for all
w € V we have
h(v,w) = (v, w)

It is clear that the association v — v’ is a linear map of V into itself. Thus with each bilinear map VxV — K
we have associated a linear map V' — V.

Then it follows that the mappings described in the previous paragraphs are inverse isomorphisms between
Endg (V) and L (V, R). They do depend on the given f.

Now we get as a result of all of the above with A : V' — V linear and (v, w) — (Av,w) its associated
bilinear map. There exists a unique linear map
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such that
(Av,w) = (v, A'w)

for all v,w € K.
(b) I think it is just the standard inner product.

2A) Give a concrete example of each of the following:

(a) A group whose commutator subgroup is strictly contained in its center.

(b) A group whose center is strictly contained in its commutator subgroup.

Answer: (a) Consider any abelian group G. Then we know that (G) = 1. However for any abelian group
G we know that Z (G) =G and 1 < G.

(b) Consider Ss (or any symmetric group). We know that Z (S3) = 1 (all symmetric group Sy,, n > 3 are
centerless). The commutator subgroup (S3) = As. Note that for the Dihedral group of order 8 we have that
the commutator subgroup has order two and so does the center. They are actually the same and so it is not
an example.

2B) Suppose that G is a finite group that acts faithfully and transitively on a finite set S. If G, = Stabg (a),
a € S, show that there does not exist nontrivial N <1 G with N < G,.
Answer: Recall that a group action of G acting on S is a mapping from G x S — S with (z,5) — zs
which satisfies (a) (zy)s = z (ys) and 1gs = s for all z,y € G and s € S. If a group G acts faithfully on
a finite set S then we know that ¢ : G — Perm (S) is a monomorphism. Another way of considering this
is if we define the kernel of the action as the set of elements of G that act trivially on every element of A
({g € G:ga=aforall a e S}). The action acts faithfully if the kernel is trivial. If G acts transitively on a
set S then for any s,t € S we can find a g € G such that gs = t. Another way to think of a transitive action
is that there is only one orbit.
We first prove the following fact: Stabg (xs) = xStabg (s) x~
Stabg (xs) = {g € G : gvs = xs}. Let g € Stabg (xs). Then grs = xs and thus 2 'gzs = s and thus
g € xStabg (s) z~ 1. Now take g’ € xStabg (s) 2~ ! thus 27 1¢’zs = s and so g'zs = zs and so ¢’ € Stabg (z5).
As G is transitive, for all s,t € S there is a g € G such that gs = t. Now assume that there is an N < G
with N < G,. Take n; #1 € N. Thus n; € Stabg (s). Thus nja = a. Take any arbitrary ¢ € S. Thus
ga =t and from our previous fact we know that Stabg (t) = gStabg (a) g~! and so nit =t as ny = gnag~*
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for some ny € N as N is normal. Thus the action is not faithful as we have found n; € G where nja = a for
alla € S.

3A) If R is a ring and a,b € R are both nonzero and both are not zero divisors show that a and b have the
same additive order.

Answer: Consider a,b # 0 with ab # 0 and ba # 0. Without loss of generality assume that the order of a
is m and b is n with m <n. Then

n(ab) =ab+---+ab=a(b+---+b)=a(nb) =0.
Thus we know that n | m and so m = n.

3B) Let R be a commutative ring with 1, and suppose that there is exactly one maximal ideal in R. Show
that every element of R not in the maximal ideal is a unit.

Answer: Let M the maximal ideal and € R \ M. Consider the ideal generated by z, (x). Then as M is
maximal, we have either that (z) C M or (x) = R. We know that (x) is not in M as x ¢ M. Thus (z) = R
and thus x must be a unit.

4A) (a) Let a and b be nonzero rational numbers. Prove that Q (v/a) = Q (\/5) if and only if there exists a
rational ¢ such that a = bc?.

(b) Let K = Q (\@, v —=3, \/5) Prove that K does not contain a square root of —1. [Hint: Use Galois theory
and part (a)].

Answer: (a) If b has a square root in Q then Q (\/5) = @ and so also a has to have a square root in

Q then we have a ¢ such that a = bc?. So assume a and b do not have square roots in Q. Assume that

Q(Va)=Q (ﬁ) This implies that \/a € Q (\/5) Thus we can write /a = q1 4+ ¢2v/b for ¢; € Q. Thus
2
a= (q1 + qu/I;) =q} + 2¢1q2Vb + g3b. Thus this is only a rational number if q; or go = 0. If g = 0 then

a = g7 which is not possible as a does not have a square root. So ¢; = 0 and we have a = ¢3b and take
g2 = c¢. Similarly in the other direction.

(b) By considering all possible subfields and seeing that Q (v2) # Q (v/=3) # Q (V/5) by using (a) we
need to have Q (\/5) =Q (\/?1), etc. But just use (a) and it is not possible.

4B) Suppose that K is a field of characteristic p > 0 and F = K (t), the field of rational operatornametions
in an indeterminate ¢. Set f (z) = 2?P — taP +t € F [z].

(i) Show that f (z) is irreducible in F'[z].

(ii) Let s be a root of zP —t € F [z], set E = F (s), and let L be a splitting field for f (x) over E. Show that
[L:E])<2.

Answer: (i) As ¢t is an indeterminate, we know that ¢ is prime in F. Thus by the Eisenstein criterion
with p = ¢t we have that f is irreducible. (ii) As f is irreducible we know that [L : F] < (2p)!. Note that
fl@)=g (xz) for g (z) = aP — tx +t. As g is irreducible in F [z], we know that f splits over the splitting
field for g over in a degree 2 extension as the roots of g (x2) are £,/a; for a; the roots of g (x). As 2P —t is
also irreducible in F [z] we know that if « is a root then so is any « + a for a € F. So we know that g (z)
splits over F' («). Thus it is clear that [L : E] < 2.

5A) Determine a Z-module monomorphism f : Zo — Z4. Show that 1 ® f : Zo ®y Zo — Zo ®yz Zy4 is the
zero map but that Zs ®yz Zs # 0 and Zo ®z Z4 # 0.

Answer: Consider the map 0 — 0 and 1 — 2, i.e. f(z) = 2z. We show that this is a Z-module
homomorphism.

flz+y) = 2(@x+y)=2x+2y=f(z)+ f(y) and
fla-z) = 2(a-x)=ax+ar=a(x+x)=az)=a-f(z) foracZ

Now we compute the map 1 ® f.

12f)lzey)=r02y=2rRy=00y =0



However we know that Zy ®z Zy = Zy and Zy ®z Z4 = Zy. In general we have that Z,, ® Zy, = Z(y, n). We
prove it in the simple case of Zs ®y Zs. Consider the map

0:lo —LoQRpZoabyr—1RQx

1-1: Assume that ¢ () = ¢ (y). Then 1@z =10y =— 1® (x —y) =0 and thus z —y = 0 and so z = y.
For onto, assume that you have z ® y. Just take f(z) as f(x) = 1 ® x and this is all we have as only
possibilitiesare 1 ® 1 or 0®1=1®0=0® 0.

5B) Let A be the abelian group generated by 1, 2, x3, 4 and x5 subject to the relations
X — X1 =3 — X2 =T4 — 3 =Xy — Ty =2T1 — Ts.

Show that A contains an element of exact order 5.
Answer: This is equivalent to

—2r1 4+ To4+ x5 =—x1 — X2+ x3+2x5=—x1 —x3+x4+x5=—T1 — x4 +225=0

We write this down in the 4 x 5 matrix as follows:

2 1 0 o0 1 1 -2 0 0 1
1 -1 1 0 1 1 -1 1 o0 1
1 0 -1 1 1 |0 -1 -1 1 1|~
-1 0 0 -1 2 0 -1 0 -1 2
1 —2 0 0 1] 1 0o 0o 0 0
0 -3 1 0 2 _ |0 -3 1 0 2 __
0 -1 -1 1 1 0 -1 -1 1 1
0 -1 0 -1 2] 0 -1 0 -1 2
1 0 0 0 0] 1 0 0 0 0]

0 1 -3 0 2 _ |01 =3 0 2|
0 -1 -1 1 1 00 —4 1 3

0 0 -1 -1 2] 0 0 -1 -1 2]
10 0 0 0] 1 0 0 0 0]
01 0 0 o0 o1 0 0 0
00 —4 1 3 00 —1 -1 2
00 -1 -1 -2 0 0 —4 1 3]
10 0 0 0] 1 0o 0 0 0]
01 0 0 0 _ |01 0 0 0f_
00 -1 -1 2 00 -1 0 0
00 0 5 -5 00 0 5 -5
1000 0] 1 0 0 0 0
0100 0| _ 01000
0010 0 00100
0005 —5 0 005 0

Therefore we have that G =X Z & Zs.



