
August 2001
Algebra Qualifying Exam

Sample Solutions

1A) Let R be the C-subalgebra of M2 (C) (2× 2 matrices) generated by the matrix

A =
[
−1 1
−4 3

]
.

(i) What is the C-dimension of R?
(ii) Compute A100.
Answer: (i) We know that the dimension of M2 (C) = 4 and so we have answer between 1 and 4. Let us
compute the characteristic and minimal polynomial for A.

λ2 − 2λ + 1 = (λ− 1)2

And therefore f (A) = A2 − 2A + 1 is both the characteristic and minimal polynomial for A. And as
A2 = 2A− 1 we know that we only need the identity matrix and A so the dimension is 2.
(ii) To compute high powers we would like to diagonalize the matrix if possible. To do this we need distinct
eigenvectors. However I believe we do not have that in this case. But there is a nice pattern to the product
as seen below: [

−1 1
−4 3

] [
−1 1
−4 3

]
=

[
−3 2
−8 5

]
[
−3 2
−8 5

] [
−1 1
−4 3

]
=

[
−5 3
−12 7

]
And so by induction we have that

A100 =
[
−199 100
−400 201

]

1B) Consider the linear operator L = (d/dx)2 acting on the vector space F3 [x] /
(
x10

)
by formal differentia-

tion (F3 is the finite field with 3 elements). Find the minimal polynomial of L.
Answer: Let us first consider what the matrix of this linear operator looks like by considering the action
on the basis. 1 → 0, x → 0, x2 → 2, x3 → 0, x4 → 0, x5 → 2x3, x6 → 0, x7 → 0, x8 → 2x6, x9 → 0. A
matrix for this is 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0


We also know that the minimal polynomial divides the characteristic polynomial of x10 which we know

as this is a lower triangular matrix. We see that x2 = 0 and that is the answer.

2A) Let M be the abelian group of all operatornametions on Z/5Z to Q (the group structure is given by
(f + g) (x) = f (x) + g (x)). Describe explicitly the automorphism group of the group M .
Answer: Consider the operatornametion that takes z̄ 7−→ αz for 0 ≤ z ≤ 4 with αz ∈ Q. Consider any
other operatornametion as z̄ 7−→ βz for βz ∈ Q. Then any automorphism is an invertible map that takes
αz → βz. By this we have GL5 (Q), all invertible 5× 5 matrices over Q.

2B) Let A and B be finite nonabelian simple groups. Determine all normal subgroups of the direct product
A×B.
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Answer: As A and B are simple nonabelian we know that only 1 and A C A and 1, B C B. So we know
that A× 1 C A×B, 1×B C B and A×B C A×B. If we project A×B onto A and B by

f : A×B → A by f (a, b) = a

g : A×B → B by f (a, b) = b

then the correspondence theorem tells us that: If f : G→ H is onto with ker f = K, then L←→ f−1 (L) =
{x ∈ G : f (x) ∈ L} is a 1-1 correspondence between the set of all subgroups L of H and the set of all
subgroups of G that contain K. Furthermore, L C H if and only if f−1 (L) C G. So if N C A × B then
fA (N) C A and gB (N) C B. You can show that ker fA ∩ ker gB = 1 = A ∩ B and thus the only normal
subgroups are the ones that we have claimed above.

3A) Let R be the ring of C∞ operatornametions on the real line. Let I0 and I1 be the ideals consisting of
operatornametions that vanish at 0 and 1 respectively. Give an explicit description of R/

[
(I0)

2 ∩ I1

]
.

Answer: We will use the chinese remainder theorem in this problem as I2
0 ⊕ I1 = R. Therefore we will have

that
R/

(
I2
0 ∩ I1

) ∼= R/I2
0 ⊕R/I1

Now we figure out what each of the direct summands is.
Define a homomorphism as follows:

ϕ : R −→ R via ϕ (f) = f (1) .

This map is clearly onto. We know that kerϕ = I1. Thus by the fundamental homomorphism theorem we
know that

R/I1
∼= R.

Now we note that f ∈ I2
0 implies that f (0) = 0 = f ′ (0) (just use product rule f · f ′ + f ′ · f = 0 + 0 = 0).

Define a ring structure on R2 via
(

a

b

)(
c

d

)
=

(
ac

bc + ad

)
and pointwise addition. Now define

φ : R −→ R via φ (f) = (f (0) , f ′ (0))

We show that this is a ring homomorphism (the additive part is clear)

φ (fg) =
(
f (0) g (0) , (fg)′ (0)

)
= (f (0) g (0) , f ′g (0) + fg′ (0))
= (f (0) , f ′ (0)) (g (0) , g′ (0))
= φ (fg)

The kernel of this onto map is I2
1 and we thus have that

R/I2
0
∼= R2 under multiplication given

Thus we have that
R/

[
I2
0 ∩ I1

] ∼= (
R2

)
with funny structure

⊕ R

3B) Let K be any field and let f =
∑n

i=0 aix
i ∈ K [x] be a polynomial of degree n. Show that f is irreducible

if and only if g =
∑n

i=0 an−ix
i is irreducible.

Answer: Proof by contrapositive. Show f is reducible if and only if g is reducible. Assume that f is
reducible. Then f = hk = (h0 + h1x + · · ·+ hmxm)

(
k0 + · · ·+ kn−m

n−mxn−m
)

for some h and k. Then just
look at g = (hm + · · ·+ hmxm) (kn−mxn−m + · · ·+ k0) and therefore it is reducible.

4A) Compute the Galois group over Q of the splitting field (in C) of f (x) = x5 − 3.
Answer: First we note that f (x) is irreducible by the Eisenstein criterion with p = 3. This implies that
the Galois group G must be a transitive subgroup of S5. We know that f (x) has 1 real root and 4 complex
roots by simple calculus. We know that x5 − 3 can be reduced over Q

(
5
√

3
)

and we can factor as

x5 − 3 = (x− α)
(
x4 + αx3 + α2x2 + α3x1 + α4

)
, where α = 51/3.
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The remaining irreducible polynomial splits over Q (α, ω) where ω are the 5th roots of unity. Thus [Q (α, ω) : Q (α)] [Q (α) : Q] =
4 · 5 = 20. Thus |G| = 20. We know that we have an element in the Galois group of order 5 and of order 4.
The degree 4 extension of 5th roots of unity is a normal extension but the degree 5 extension of fifth roots of
3 is not normal. As the 2-Sylow subgroups correspond to an extension that is not normal, there must be 5
2-Sylow subgroups. However the 5-Sylow subgroup corresponds to a normal extension and thus we have (up
to isomorphism) a Z5 C G. We know that the group is not abelian as a two cycle does not commute with a
5-cycle. We have an action of Z4 on Aut (Z5) and thus the structure of G is given as a semidirect product
with G ∼= Z5 o Z4.

4B) Suppose that f (x) ∈ Q [x], g (x) = f
(
x2

)
, K ⊆ C is a splitting field for g (x), and [K : Q] is odd. Show

that f (x) and g (x) have the same Galois group.
Answer: Let L be the splitting field for f (x). Then we know that L ⊆ K. If we know that roots of f (x)
are ai in the splitting field then the roots of g (x) in its splitting field are ±√ai. Each of these possible
splitting fields are either dimension 1 or 2 as they are quadratic extensions. Therefore we know that

odd = [K : Q] = [K : L] [L : Q] = 2k [L : Q]

Thus k = 0 and we have the same splitting field for g (x) and f (x) and therefore the same Galois group.

5A) Show that Q⊗ZQ and Q are isomorphic as Z-modules.
Answer: We need to give a Z-module homorphism that is an isomorphism. Consider the map ϕ : Q→ Q⊗ZQ
by mapping q 7−→ 1⊗ q. Then

ϕ (q + r) = 1⊗ (q + r) = 1⊗ q + q ⊗ r = ϕ (q) + ϕ (r) .

Also we know that for z ∈ Z we have

ϕ (zq) = 1⊗ zq = z ⊗ q = z (1⊗ q) = zϕ (q) .

Now we check that the map is 1-1 and onto. Assume that ϕ
(r

s

)
= ϕ

(
t

u

)
. Then we know that 1 ⊗ r

s
=

1⊗ t

u
=⇒ 1⊗ r

s
−1⊗ t

u
= 0 =⇒ 1⊗

(
r

s
− t

u

)
= 0 =⇒ r

s
− t

u
= 0 =⇒ r

s
=

t

u
. For surjectivity, given

a

b
⊗ c

d

we need to find an element q ∈ Q such that ϕ (q) =
a

b
⊗ c

d
. We note that

a

b
⊗ c

d
=

a

b
⊗ c

d

b

b
=

ab

b
⊗ c

db
= 1⊗ ac

bd
.

Thus we let q =
ac

bd
.

5B) Let T be the Q-algebra of 3× 3 matrices generated by the matrix

A =

 1 −2 −1
−1 2 −3
−1 0 −3


Write T ⊗Q R as a product of fields.
Answer: We compute the minimal polynomial of A and get x3 − 10x + 8. Therefore we know that
T ∼= Q [x] /

〈
x3 − 10x + 8

〉
. We now note that Q ⊗Q R ∼= R and also Q [x] ⊗Q R ∼= R [x]. Lastly we know

that Q [x] /
〈
x3 − 10x + 8

〉
⊗Q R ∼= R [x] /

〈
x3 − 10x + 8

〉
. Using some basic calculus and college algebra we

see that x3 − 10x + 8 has 3 distinct real roots, call them α, β, γ. Thus by the chinese remainder theorem we
know that

R [x] /
〈
x3 − 10x + 8

〉 ∼= R [x] / 〈x− α〉 ⊕ R [x] / 〈x− β〉 ⊕ R [x] / 〈x− γ〉
∼= R⊕ R⊕ R = R3.
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