
August 2000
Algebra Qualifying Exam

Sample Solutions

1A) Answer: Assume that A =
[
a b
c d

]
and B =

[
e f
g h

]
then AB =

[
ae + bg af + bh
ce + dg cf + dh

]
amd BA =[

ea + fc eb + fd
ga + ch gb + dh

]
. Then we compute det (AB − λI) and det (BA− λI) .

∣∣∣∣(ea + fc)− λ eb + fd
ga + ch (gb + dh)− λ

∣∣∣∣
= eagb + eadh + fcgb + fcdh− (ea + fc + gb + dh) λ

− (ebga + ebch + fdga + fdch) + λ2

= λ2 − (ea + fc + gb + dh) λ + eadh + fcgb− ebch− fdga

and ∣∣∣∣(ae + bg)− λ af + bh
ce + dg (cf + dh)− λ

∣∣∣∣
= aecf + aedh + bgcf + bgdh− (ae + bg + cf + dh) λ

− (ceaf + cebh + dgaf + dgbh)
= λ2 − (ea + fc + gb + dh) λ + eadh + fcgb− ebch− fdga

(b) We use the hint that either A or B is invertible. Assume that A is invertible. Then A−1 (AB) A = BA
and so AB and BA are similar matrices. Thus we can use the fact that similar matrices have the same
characteristic polynomial. Of course we prove the statement. Suppose Q and R are similar matrices. Then
there exists invertible P such that P−1QP = R. Calculating the characteristic polynomial we have

det
(
P−1QP − λI

)
= det

(
P−1QP − P−1λIP

)
= det

(
P−1 (Q− λI)P

)
= det

(
P−1

)
det (Q− λI) det (P )

= det (P )−1 det (P ) det (Q− λI) = det (Q− λI)

1B) Answer: Let

M =
(

a b
c d

)
and

det (M − Iλ) = λ2 − (a + d) λ + (ad− bc)

This has distinct real roots if (− (a + d))2 − 4 (ad− bc)2 > 0

(− (a + d))2 − 4 (ad− bc)

= (a− d)2 + 4bc

As (a− d) ≥ 0 and bc > 0 we have distinct real roots, and therefore two distinct eigenvalues, and thus two
distinct eigenvectors. Therefore the matrix is diagonalizable.

2A) Determine all finite groups G having a proper subgroup H that contains all proper subgroups of G.
Answer: cyclic p-groups. I will give a long answer as it has lots of nice little claims.
Claim 1: G is a p-group.
To see this, note that if H is a subgroup that contains all proper subgroups of G, it must contain all Sylow
subgroups of G. Thus, if it is not a p-group, it will be divisible by all prime powers that divide G and
consequently will have the same order as G contradicting the fact that it is a proper subgroup.
Claim 2: Any p-group has a nontrivial center Z (G).
Use the class equation that |G| = |Z (G)|+

∑
|cl (x)|
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Claim 3: For any p-group G with |G| = pn, there exists a subgroup of order pk for any k < n. We prove this
by induction. Clearly this is true for n = 1. Now assume |G| = pn+1. We know G has a nontrivial center
by claim 2. In particular, as all subgroups of the center are normal, Cauchy’s theorem will guarantee that
there is a normal subgroup of size p, call it P. Then G/P is a group of order p so we can apply the induction
hypothesis. Then we use the correspondence theorem to find subgroups in G of order pk for each k < n + 1.
Claim 4: If G is a group and Z (G) is the center of G with G/Z (G) cyclic, then G is abelian.

Since G/Z (G) is cyclic, we can find a representative g for the group G/Z (G) which generates G/Z (G).
Then any x ∈ G can be written in the form gnz for some z ∈ Z (G) and g the representative we choose.
Suppose x, y ∈ G. Then x = gnz and y = gmz′. So

xy = gnzgmz′ = zz′gngm = zz′gn+m = zz′gm+n = zz′gmgn = gmz′gnz = yx.

And therefore G is abelian. Note: That if H ≤ Z (G), then we can make the same argument for G/H.
Claim 5: If G is a p-group and has a unique subgroup of index p then it is cyclic.
We prove this by induction. For n = 1 it is trivial. Assume |G| = pn+1. Now let P be a subgroup of the
center of order p. Then we have that G/P has order pn. Now it must have a subgroup of index p by claim
3. Moreover, by the correspondence theorem it must be unique. Thus by the induction hypothesis, it must
be cyclic. But following the note after claim 4, G must be abelian. Now using the fundamental theorem for
finite abelian groups, we have G ∼= Zpn ⊕ Zp or G ∼= Zpn+1 , i.e. G is cyclic.

Now we finally prove the answer. We know that G is a p-group by claim 1. By claim 3, there exists
subgroups of order pk for every k < n, so if G has a subgroup which contains all other subgroups, it must
have maximal order, i.e. it must have index p in G. Also, since it contains all subgroups, it must be the
unique subgroup of index p. Thus by claim 5, it must be cyclic. So we know the structure it must have, and
it is not hard to see that there are sufficient conditions also, i.e. any cyclic group of order pn has a subgroup
which contains all other subgroups (namely the subgroup generated by xp where x generates G).

2B) Let G be a finite group with exactly two conjugacy classes of elements. Determine the possible isomor-
phism types for G.
Answer: We know that the identity is always its own conjugacy class. Therefore there is only one other
conjugacy class. We also know that for each x ∈ Z (G), x is its own conjugacy class. Some other claims we
use.
Claim 1: Conjugacy class preserves the order of an element.
Let g ∈ G and suppose it has order n. Then for any x ∈ G with order n,(

xgx−1
)n

= xgx−1xgx−1 · · ·xgx−1 = xgnx−1 = 1.

Thus n divides the order of xgx−1 which say is d. Then we know that if xgx−1 has order d then(
xgx−1

)d
= xgdx−1 = 1

and this implies that gd = 1 and so d|n. Thus d = n and they have the same order.
Claim 2: G must have order p for p a prime.
The identity element is one conjugacy class. All others fall into the same class and so must have the same
order. Clearly they must have order a prime else Cauchy’s theorem would guarantee elements of order n
where n divides p thus giving different conjugacy classes.
Now note that any group of order p where p is a prime is cyclic. In particular, it will be abelian and thus
every conjugacy class will have size one. In particular the number of conjugacy classes = |G| = p, and since
there are only two by assumption, this is only true for p = 2. Thus Z2 is the only group with this property.

3A) Determine (up to isomorphism) all semisimple rings having 324 elements.
Answer: By the Wedderburn-Artin theory if we have a semisimple Artinian ring (which is true as the ring
is finite), then we know that the ring is the direct sum of full matrix algebras over a division ring (which is a
field because a finite division ring is a field, another theorem of Weddeburn). Therefore the possibilities are

F2×F2×F3×F3×F3×F3, F2×F2×F32 ×F3×F3, F2×F2×F32 ×F32 , F2×F2×F33 ×F3, F2×F2×F34 ,
F22 × F3 × F3 × F3 × F3, F22 × F32 × F3 × F3, F22 × F32 × F32 , F22 × F33 × F3, F22 × F34 , F2 × F2 ×M2 (F3),
F4 ×M2 (F3).

3B) (a) Let R be a finite integral domain. Show R is a field.
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(b) Let R be a commutative ring with identity and let I be a prime ideal of finite index in R. Show that I
is a maximal ideal.
Answer: (a) For each r ∈ R we can define a map Ψa : R → R by left multiplication of a for each a ∈ R∗.
This will be a 1-1 map since R is a domain. It must be onto since we have a 1-1 map from a finite set to a
finite set.Thus there exists x ∈ R such that ax = 1, i.e. each a is a unit. Or we can use that fact that if we
have an a ∈ R∗ then we have a, a2, ..., an, ..., ar and since our ring is finite we must have an = ar for some
r > n. Thus an−ran = an and an−r is the identity for an. This identity must be the identity for the entire
ring by the following:
To prove there is an identity, we may assume there is an ea and eb such that eaa = a and ebb = b. If ea 6= eb

then ea − eb 6= 0. As a, b 6= 0 we know that ab 6= 0 and so ab (ea − eb) 6= 0. This is a contradiction as using
commutativity we have ab (ea − eb) = ab− ab = 0
(b) Claim: R/I is an integral domain.
Assume that (x + I) (y + I) = I. This implies that xy + I = I implies xy ∈ I. As I is a prime ideal we have
that x ∈ I or y ∈ I. Thus x + I = I or y + I = I and so R/I is an integral domain.
It is a finite integral domain and therefore a field. Therefore as R/I is a field, we have that R/I is simple
and thus I is a maximal ideal.

4A) Let K = F81, the field with 81 elements, with prime field F3. Determine, with reasons, the cardinalities
of the following two subsets of K.
(a) S = {s ∈ K : F (a) = K}, generators for K as a field extension of F .
(b) T = {a ∈ K : 〈a〉 = K∗ = K\ {0}}, generators for the (multiplicative) cyclic group K∗.
Answer: (a) As F81 is a degree four extension of F3 it has F9 as its only intermediary subfields. Therefore
if we take s ∈ F81\F9 then we know that if we adjoin one of these that we will have generated the whole
field F81. Therefore the answer is 72.
(b) One way to think of this problem is that |T | is the same as the number of generators of the cyclic group
Z80. This is just ϕ (80), the Euler phi operatornametion. The total is 32. Note: ϕ (80) = ϕ

(
24

)
ϕ (5) and

ϕ (pn) = (p− 1) pn−1 and so we have (2− 1) 23 · (5− 1) 50 = 32.

4B) Determine the Galois group over Q of f (x) = x3 − 3x + 1.
Answer: The first thing we note is that f (x) is irreducible. We see this by reduction mod 2. We get
f (x) = x3 + x + 1 and f (0) = 1 and f (1) = 1. By simple calculus we can show that this operatornametion
has three real roots. As the polynomial is irreducible, we know that the Galois group is a transitive subgroup
of S3. Therefore it is either A3 or S3. But we have no element of order two and therefore it is A3. The other
way to do this is to note that it is already in the nice form to compute a discriminant. The discriminant is
81 which has a root in 9 which means that it is A3.

5A) Show that Q is not a free Z-module.
Answer: Assume that Q is a free Z-module. Then there is a basis {bi}i∈I such that all q ∈ Q can be written

as a finite sum q =
∑

aibi for ai ∈ Z. If the basis has size one then we could choose
s

t
as the basis element

for (s, t) = 1 and s, t 6= 0. Let t = pk1
1 · · · pkn

n be the prime factorizati0n of t. Pick another prime q ∈ Q not in

the factorization of t. Then we can show that
1
q

cannot be expressed as a Z-scalar multiple of
s

t
. Therefore

the basis has cardinality greater than 1. So take two basis elements
s

t
and

u

v
. Then we have that

(tu)
(s

t

)
+ (−vs)

(u

v

)
= us− us = 0

and therefore any basis of size greater than 1 is linearly dependent.

5B) Describe the abelian group with the presentation

A = 〈a, b, c : 4a + 10b− 8c = 0, 2a + 8b− 4c = 0〉

as a direct sum of cyclic groups.
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Answer: We use the procedure of finding smith normal form.(
4 10 −8
2 8 −4

)
−→

(
2 8 −4
4 10 −8

)
−→

(
2 8 −4
0 −6 0

)
−→

(
2 0 0
0 −6 0

)
Therefore the group is isomorphic to Z2 × Z6 × Z as there is one free generator.
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