
August 1999
Algebra Qualifying Exam

Sample Solutions

1A) An n × n matrix A over a field F is called anti-idempotent if A2 = −A. Suppose A is
anti-idempotent.

(a) What are the possible minimal polynomials for A?
(b) Show that A is diagonalizable over F .
(c) Show that two idempotent matrices over F are similar if and only if they have the

same rank.
Answer: (a) As A2 = −A =⇒ A2 + A = 0 we know that x2 + x = x (x + 1) = 0 so the
possible minimal polynomials are x2 + x, x + 1, or x.

(b) The minimal polynomial has only distinct linear factors and a matrix is diagonalizable
if and only if the minimal polynomial has distinct linear factors.

(c) The same rank implies that they have the same row and column space, so as the only
eigenvalues are −1 and 0, they have the same JCF and so are similar.

1B) Let α be
√

2 +
√
−1 in Q

(√
2,
√
−1

)
= L. Choose a Q-basis B for the Q-vector space

L. Furthermore, determine the matrix MB of the linear transformations α∗ : L → L given
by x → x · α and the rational canonical form of MB.
Answer: Basis:

{
1, i,

√
2,
√

2i
}
. For the matrix MB, just look at the images of the basis

elements: 1 →
√

2 + i, i → −1 +
√

2i,
√

2 → 2 + i
√

2,
√

2i → 2i−
√

2

MB =


0 −1 2 0
1 0 0 2
1 0 0 −1
0 1 1 0


RCF: The Smith Normal Form of A− xI is:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x4 − 2x2 + 9


The characteristic polynomial of A is det (A− λI) = x4−2x2 +9. As A has distinct factors,
it must have characteristic polynomial equal to minimal polynomial as all invariant factors
divide the next one. Thus the RCF is

0 0 0 −9
1 0 0 0
0 1 0 2
0 0 1 0


2A)There is a simple group of order 168. Determine, with reasons, how many elements of
order 7 it has.
Answer: As 168 = 23 · 3 · 7, we know by the Sylow theorems that there are n7 = 1 mod 7
Sylow 7-subgroups. So there are either 1, 8, 15, 22, 29, 36, ... of them. But we know that our
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only choices are 1 or 8 as n7 must divide the order of G. A corollary to the Sylow theorems
says that a Sylow subgroup is normal if and only if it is unique. As our group is simple,
there must be 8 Sylow 7-subgroups and therefore 8 (7− 1) = 8 · 6 = 48 elements of order 7.

2B) Let G be a finite nilpotent group. Show that for any divisor n of the order of G there
exists a subgroup whose order is n. Hint: Consider the case that G is a p-group, p a prime
first. Note that the center of G is nontrivial.
Answer: First I will prove the following claim: A finite group G is nilpotent if and only if
it is the direct product of its Sylow subgroups.

Proof: We first show that if H is a proper subgroup of a nilpotent group that N (H) 6= H
(the normalizer of H is not H). Let n be maximal such that Zn $ H (contained in but not
equal to H). Choose x ∈ Zn+1 /∈ H. Let h ∈ H. Then

x−1hx = h
(
h−1x−1hx

)
∈ HZn = H,

so x ∈ N (H). Now let P be a Sylow P -subgroup. Suppose P is not normal, that is
N (P ) 6= G. Then P is a proper subgroup of G, so by assertion N (P ) 6= P . Using the
same fact again for proper subgroup N (P ) we have N (N (P )) 6= N (P ), a contradiction
(See Grove p.30 Prop 7.4).

(H ⊃ N ⊃ NP , let x ∈ N (H). P and x−1Px are Sylow P -subgroups in H. So ∃y ∈ H
s.t. P = y−1x−1Pxy. So xy ∈ N (P ) ⊂ A, so x ∈ H.)
This proves every Sylow P -subgroup is normal. The converse is proved by noting that every
Sylow subgroup is a p-group and therefore nilpotent (Grove p.29). (G/Z1 is also a p-group,
...) And the direct product of nilpotent groups is nilpotent. (Let H and K be nilpotent
groups. Zm (H ×K) = Zm (H)×Zm (K) for any m. Hence Zm (H ×K) = H ×K for some
m. Therefore H×K is nilpotent and the general result follows from induction.) Or we could
have just quoted Grove Theorem 7.8: A finite group G is nilpotent iff it is the direct product
of its Sylow subgroups.
Lastly, assume that |G| = n = pe1

1 · · · per
r . Then G = Sp1 ⊕ · · · ⊕ Spr and |Spi

| = pei
i . Let

d = pf1

1 · · · pfr
r . By the first Sylow theorem, each Spi

contains a subgroup S ′
pi

of order pfi

i .
Grove p.20 using ex 2.4 and Sylow 1). Then H = S ′

p1
⊕ · · · ⊕ S ′

pr
is a subgroup of order d.

3A) Suppose the abelian group A has presentation

A = 〈a, b, c, d : 3a = 7d, b = 3d, 2a = b− 5d〉

Determine the structure of A as a direct sum of cyclic groups.
Answer: Another SNF calculation as if A is a finitely generated abelian group then there
exists a non-negative integer m and integers n1, ..., nk all larger than 1 with n|ni−1 for 2 ≤
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i ≤ k such that A ∼= Zm ⊕ Zn1 ⊕ · · · ⊕ Znk
:3 0 0 −7

0 1 0 −3
2 −1 0 5

 →

 0 3 −7 0
1 0 −3 0
−1 2 5 0

 →

 1 0 −3 0
0 3 −7 0
−1 2 5 0

 →

1 0 −3 0
0 3 −7 0
0 2 2 0

 →

1 0 0 0
0 3 −7 0
0 2 2 0

 →

1 0 0 0
0 2 2 0
0 3 −7 0

 →

1 0 0 0
0 2 2 0
0 1 −9 0

 →

1 0 0 0
0 2 0 0
0 1 −10 0

 →

1 0 0 0
0 1 −10 0
0 2 0 0

 →

1 0 0 0
0 1 −10 0
0 0 20 0

 →

1 0 0 0
0 1 0 0
0 0 20 0


So our group has 1 free generator and thus G ∼= Z20 ⊕ Z.

3B) Let R be a PID, let M be a free R-module of finite rank and let f be an R-endomorphism
of M. Show that f is injective if and only if M/ Im (f) is an R-torsion module.
Answer:

4A) Recall that two elements r and s of a ring R are algebraically independent over a subring
S of R is the only poynomial f (x, y) ∈ S [x, y] for which f (r, s) = 0 is the zero polynomial.
If p and q are distinct (positive) primes in Z, show that

√
p and

√
q are algebraically inde-

pendent over Z. Note: This is not true, find a counterexample.
Answer: If we take the polynomial f (x, y) = px2 − qy2 and take x =

√
q and y =

√
p then

we have that p
√

q2 − q
√

p2 = pq − qp = pq − pq = 0.

4B) Let f (x) = x3 + 5x− 1 ∈ Q [x].
(a) Show that f is an irreducible polynomial over Q.
(b) Since f is irreducible L = Q [x] / (f) is a field. Determine the multiplicative inverse

of 2x− 2 + (f) in L explicitly.
Answer: (a) As f is a degree 3 polynomial, it is irreducible iff it has a linear factor, i.e. a
root in Q. If we reduce coefficients mod 2, we get f̄ = x3 +x+1 and f̄ (1̄) = 1̄ and f̄ (0̄) = 1̄
so we know that f does not have any roots. We also could have noted that f is monic over
Q and it contains a root in Q if and only if it contains a root in Z and the only choices would
be 1 or −1 and f (1) = 5 and f (−1) = −7.

(b) As Q [x] is a PID we have unique factorization taking p (x) , q (x) ∈ Q [x] such that
p (x) (x3 + 5x− 1) + q (x) (2x− 2) = 1. Use the Euclidean algorithm and we get inverse:

x2 + x + 6 + (f)

5A) Let F = C, let K = C (t), the field of rational operatornametions is an indeterminate t,
and let G be the Galois group G (K : F ). Suppose ϕ and θ in G are determined by ϕ (t) = ζt
and θ (t) = 1/t, where ζ is a primitive nth root of unity in C, n ≥ 4, and set H = 〈ϕ, θ〉 ≤ G.
Show that H is isomorphic with the dihedral group of order 2n.
Answer:
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5B) Let Fn denote the field with n elements.
(a) Construct explicitly the field with 64 elements by taking a degree 3 irreducible poly-

nomial in F4.
(b) Determine the order and structure of the Galois group G of this extension.
(c) How many primitive elements over F4 does F64 contain? Justify.

Answer: (a) We first need a degree 3 irreducible polynomial over F4 [x]. We take F4 as the
set {0, 1, t, t + 1} with t2 + t + 1 = 0. Consider the polynomial f (x) = x3 + x + 1. We know
that f (1) = 1 = f (0). f (t) = t3+t+1 = t (t2)+t+1 = t (t + 1)+t+1 = t2+1 = t+1+1 = t.
Also f (t + 1) = (t + 1)3 + t + 1 + 1 = (t2 + 1) (t + 1) + t = t (t + 1) + t = t2 = t + 1. Thus
we take

F26 = F64 = F4 [x] /
〈
x3 + x + 1

〉
(b) Suppose F is a finite field with q elements having prime field Fp. Then q = pn where

n = [F : Fp] and F is a splitting field over Fp for the polynomial f (x) = xq − x. Conversely,
if 0 < n ∈ N and p is prime, then there is a field F with q = pn elements. The Galois
group G (F : Fp) is cyclic of order n, with the Frobenius map ϕp as a generator. By the
Fundamental Theorem of Galois Theory and the fact that [F64 : F4] = 3 we must have that
G ∼= Z3.

(c) There are 60 primitive elements as there are no subfields between F4 and F64 and
so for γ ∈ F64, F4 ≤ F4 (γ) ≤ F64 and the only 4 elements for which F4 (γ) 6= F64 are the
elements of F4 as there are no other possible subfields.
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