August 1999 Algebra Qualifying Exam Sample Solutions

- 1A) An $n \times n$ matrix A over a field F is called anti-idempotent if $A^2 = -A$. Suppose A is anti-idempotent.
 - (a) What are the possible minimal polynomials for A?
 - (b) Show that A is diagonalizable over F.
- (c) Show that two idempotent matrices over F are similar if and only if they have the same rank.

Answer: (a) As $A^2 = -A \implies A^2 + A = 0$ we know that $x^2 + x = x(x+1) = 0$ so the possible minimal polynomials are $x^2 + x$, x + 1, or x.

- (b) The minimal polynomial has only distinct linear factors and a matrix is diagonalizable if and only if the minimal polynomial has distinct linear factors.
- (c) The same rank implies that they have the same row and column space, so as the only eigenvalues are -1 and 0, they have the same JCF and so are similar.
- 1B) Let α be $\sqrt{2} + \sqrt{-1}$ in $\mathbb{Q}\left(\sqrt{2}, \sqrt{-1}\right) = L$. Choose a \mathbb{Q} -basis B for the \mathbb{Q} -vector space L. Furthermore, determine the matrix M_B of the linear transformations $\alpha^* : L \to L$ given by $x \to x \cdot \alpha$ and the rational canonical form of M_B .

Answer: Basis: $\{1, i, \sqrt{2}, \sqrt{2}i\}$. For the matrix M_B , just look at the images of the basis elements: $1 \to \sqrt{2} + i$, $i \to -1 + \sqrt{2}i$, $\sqrt{2} \to 2 + i\sqrt{2}$, $\sqrt{2}i \to 2i - \sqrt{2}$

$$M_B = \begin{bmatrix} 0 & -1 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

RCF: The Smith Normal Form of A - xI is:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & x^4 - 2x^2 + 9
\end{bmatrix}$$

The characteristic polynomial of A is $\det(A - \lambda I) = x^4 - 2x^2 + 9$. As A has distinct factors, it must have characteristic polynomial equal to minimal polynomial as all invariant factors divide the next one. Thus the RCF is

$$\begin{bmatrix} 0 & 0 & 0 & -9 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2A)There is a simple group of order 168. Determine, with reasons, how many elements of order 7 it has.

Answer: As $168 = 2^3 \cdot 3 \cdot 7$, we know by the Sylow theorems that there are $n_7 = 1 \mod 7$ Sylow 7-subgroups. So there are either 1, 8, 15, 22, 29, 36, ... of them. But we know that our

1

only choices are 1 or 8 as n_7 must divide the order of G. A corollary to the Sylow theorems says that a Sylow subgroup is normal if and only if it is unique. As our group is simple, there must be 8 Sylow 7-subgroups and therefore $8(7-1) = 8 \cdot 6 = 48$ elements of order 7.

2B) Let G be a finite nilpotent group. Show that for any divisor n of the order of G there exists a subgroup whose order is n. Hint: Consider the case that G is a p-group, p a prime first. Note that the center of G is nontrivial.

Answer: First I will prove the following claim: A finite group G is nilpotent if and only if it is the direct product of its Sylow subgroups.

Proof: We first show that if H is a proper subgroup of a nilpotent group that $N(H) \neq H$ (the normalizer of H is not H). Let n be maximal such that $Z_n \subsetneq H$ (contained in but not equal to H). Choose $x \in Z_{n+1} \notin H$. Let $h \in H$. Then

$$x^{-1}hx = h(h^{-1}x^{-1}hx) \in HZ_n = H,$$

so $x \in N(H)$. Now let P be a Sylow P-subgroup. Suppose P is not normal, that is $N(P) \neq G$. Then P is a proper subgroup of G, so by assertion $N(P) \neq P$. Using the same fact again for proper subgroup N(P) we have $N(N(P)) \neq N(P)$, a contradiction (See Grove p.30 Prop 7.4).

 $(H \supset N \supset NP)$, let $x \in N(H)$. P and $x^{-1}Px$ are Sylow P-subgroups in H. So $\exists y \in H$ s.t. $P = y^{-1}x^{-1}Pxy$. So $xy \in N(P) \subset A$, so $x \in H$.)

This proves every Sylow P-subgroup is normal. The converse is proved by noting that every Sylow subgroup is a p-group and therefore nilpotent (Grove p.29). (G/Z_1 is also a p-group, ...) And the direct product of nilpotent groups is nilpotent. (Let H and K be nilpotent groups. $Z_m(H \times K) = Z_m(H) \times Z_m(K)$ for any m. Hence $Z_m(H \times K) = H \times K$ for some m. Therefore $H \times K$ is nilpotent and the general result follows from induction.) Or we could have just quoted Grove Theorem 7.8: A finite group G is nilpotent iff it is the direct product of its Sylow subgroups.

Lastly, assume that $|G| = n = p_1^{e_1} \cdots p_r^{e_r}$. Then $G = S_{p_1} \oplus \cdots \oplus S_{p_r}$ and $|S_{p_i}| = p_i^{e_i}$. Let $d = p_1^{f_1} \cdots p_r^{f_r}$. By the first Sylow theorem, each S_{p_i} contains a subgroup S'_{p_i} of order $p_i^{f_i}$. Grove p.20 using ex 2.4 and Sylow 1). Then $H = S'_{p_1} \oplus \cdots \oplus S'_{p_r}$ is a subgroup of order d.

3A) Suppose the abelian group A has presentation

$$A = \langle a, b, c, d : 3a = 7d, b = 3d, 2a = b - 5d \rangle$$

Determine the structure of A as a direct sum of cyclic groups.

Answer: Another SNF calculation as if A is a finitely generated abelian group then there exists a non-negative integer m and integers $n_1, ..., n_k$ all larger than 1 with $n|n_{i-1}$ for $2 \le n$

 $i \leq k$ such that $A \cong \mathbb{Z}^m \oplus \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_k}$:

$$\begin{bmatrix} 3 & 0 & 0 & -7 \\ 0 & 1 & 0 & -3 \\ 2 & -1 & 0 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 3 & -7 & 0 \\ 1 & 0 & -3 & 0 \\ -1 & 2 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & 0 \\ 0 & 3 & -7 & 0 \\ -1 & 2 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & -7 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & -7 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 1 & -9 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & -10 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 1 & -10 & 0 \\ 0 & 0 & 20 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -10 & 0 \\ 0 & 0 & 20 & 0 \end{bmatrix}$$

So our group has 1 free generator and thus $G \cong \mathbb{Z}_{20} \oplus \mathbb{Z}$.

3B) Let R be a PID, let M be a free R-module of finite rank and let f be an R-endomorphism of M. Show that f is injective if and only if $M/\operatorname{Im}(f)$ is an R-torsion module.

Answer:

4A) Recall that two elements r and s of a ring R are algebraically independent over a subring S of R is the only poynomial $f(x,y) \in S[x,y]$ for which f(r,s) = 0 is the zero polynomial. If p and q are distinct (positive) primes in \mathbb{Z} , show that \sqrt{p} and \sqrt{q} are algebraically independent over \mathbb{Z} . **Note:** This is not true, find a counterexample.

Answer: If we take the polynomial $f(x,y) = px^2 - qy^2$ and take $x = \sqrt{q}$ and $y = \sqrt{p}$ then we have that $p\sqrt{q^2} - q\sqrt{p^2} = pq - qp = pq - pq = 0$.

- 4B) Let $f(x) = x^3 + 5x 1 \in \mathbb{Q}[x]$.
 - (a) Show that f is an irreducible polynomial over \mathbb{Q} .
- (b) Since f is irreducible $L = \mathbb{Q}[x]/(f)$ is a field. Determine the multiplicative inverse of 2x 2 + (f) in L explicitly.

Answer: (a) As f is a degree 3 polynomial, it is irreducible iff it has a linear factor, i.e. a root in \mathbb{Q} . If we reduce coefficients mod 2, we get $\bar{f} = x^3 + x + 1$ and $\bar{f}(\bar{1}) = \bar{1}$ and $\bar{f}(\bar{0}) = \bar{1}$ so we know that f does not have any roots. We also could have noted that f is monic over \mathbb{Q} and it contains a root in \mathbb{Q} if and only if it contains a root in \mathbb{Z} and the only choices would be 1 or -1 and f(1) = 5 and f(-1) = -7.

(b) As $\mathbb{Q}[x]$ is a PID we have unique factorization taking $p(x), q(x) \in \mathbb{Q}[x]$ such that $p(x)(x^3 + 5x - 1) + q(x)(2x - 2) = 1$. Use the Euclidean algorithm and we get inverse:

$$x^2 + x + 6 + (f)$$

5A) Let F = C, let K = C(t), the field of rational operatornametions is an indeterminate t, and let G be the Galois group G(K : F). Suppose φ and θ in G are determined by $\varphi(t) = \zeta t$ and $\theta(t) = 1/t$, where ζ is a primitive n^{th} root of unity in C, $n \ge 4$, and set $H = \langle \varphi, \theta \rangle \le G$. Show that H is isomorphic with the dihedral group of order 2n.

Answer:

- 5B) Let \mathbb{F}_n denote the field with n elements.
- (a) Construct explicitly the field with 64 elements by taking a degree 3 irreducible polynomial in \mathbb{F}_4 .
 - (b) Determine the order and structure of the Galois group G of this extension.
 - (c) How many primitive elements over \mathbb{F}_4 does \mathbb{F}_{64} contain? Justify.

Answer: (a) We first need a degree 3 irreducible polynomial over $\mathbb{F}_4[x]$. We take \mathbb{F}_4 as the set $\{0, 1, t, t+1\}$ with $t^2 + t + 1 = 0$. Consider the polynomial $f(x) = x^3 + x + 1$. We know that f(1) = 1 = f(0). $f(t) = t^3 + t + 1 = t(t^2) + t + 1 = t(t+1) + t + 1 = t^2 + 1 = t + 1 + 1 = t$. Also $f(t+1) = (t+1)^3 + t + 1 + 1 = (t^2+1)(t+1) + t = t(t+1) + t = t^2 = t + 1$. Thus we take

$$\mathbb{F}_{2^6} = \mathbb{F}_{64} = \mathbb{F}_4 \left[x \right] / \left\langle x^3 + x + 1 \right\rangle$$

- (b) Suppose F is a finite field with q elements having prime field F_p . Then $q=p^n$ where $n=[F:F_p]$ and F is a splitting field over F_p for the polynomial $f(x)=x^q-x$. Conversely, if $0 < n \in \mathbb{N}$ and p is prime, then there is a field F with $q=p^n$ elements. The Galois group $G(F:F_p)$ is cyclic of order n, with the Frobenius map φ_p as a generator. By the Fundamental Theorem of Galois Theory and the fact that $[F_{64}:F_4]=3$ we must have that $G \cong \mathbb{Z}_3$.
- (c) There are 60 primitive elements as there are no subfields between F_4 and F_{64} and so for $\gamma \in F_{64}$, $F_4 \leq F_4(\gamma) \leq F_{64}$ and the only 4 elements for which $F_4(\gamma) \neq F_{64}$ are the elements of F_4 as there are no other possible subfields.