August 1999 Algebra Qualifying Exam

- 1A) An $n \times n$ matrix A over a field F is called anti-idempotent if $A^2 = -A$. Suppose A is anti-idempotent.
 - (a) What are the possible minimal polynomials for A?
 - (b) Show that A is diagonalizable over F.
- (c) Show that two idempotent matrices over F are similar if and only if they have the same rank.
- 1B) Let α be $\sqrt{2} + \sqrt{-1}$ in $\mathbb{Q}\left(\sqrt{2}, \sqrt{-1}\right) = L$. Choose a \mathbb{Q} -basis B for the \mathbb{Q} -vector space L. Furthermore, determine the matrix M_B of the linear transformations $\alpha^* : L \to L$ given by $x \to x \cdot \alpha$ and the rational canonical form of M_B .
- 2A) There is a simple group of order 168. Determine, with reasons, how many elements of order 7 it has.
- 2B) Let G be a finite nilpotent group. Show that for any divisor n of the order of G there exists a subgroup whose order is n. Hint: Consider the case that G is a p-group, p a prime first. Note that the center of G is nontrivial.
- 3A) Suppose the abelian group A has presentation

$$A = \langle a, b, c, d : 3a = 7d, b = 3d, 2a = b - 5d \rangle$$

Determine the structure of A as a direct sum of cyclic groups.

- 3B) Let R be a PID, let M be a free R-module of finite rank and let f be an R-endomorphism of M. Show that f is injective if and only if $M/\operatorname{Im}(f)$ is an R-torsion module.
- 4A) Recall that two elements r and s of a ring R are algebraically independent over a subring S of R is the only poynomial $f(x,y) \in S[x,y]$ for which f(r,s) = 0 is the zero polynomial. If p and q are distinct (positive) primes in \mathbb{Z} , show that \sqrt{p} and \sqrt{q} are algebraically independent over \mathbb{Z} . **Note:** This is not true, find a counterexample.
- 4B) Let $f(x) = x^3 + 5x 1 \in \mathbb{Q}[x]$.
 - (a) Show that f is an irreducible polynomial over \mathbb{Q} .
- (b) Since f is irreducible $L = \mathbb{Q}[x]/(f)$ is a field. Determine the multiplicative inverse of 2x 2 + (f) in L explicitly.
- 5A) Let F = C, let K = C(t), the field of rational operatornametions is an indeterminate t, and let G be the Galois group G(K : F). Suppose φ and θ in G are determined by $\varphi(t) = \zeta t$ and $\theta(t) = 1/t$, where ζ is a primitive n^{th} root of unity in C, $n \ge 4$, and set $H = \langle \varphi, \theta \rangle \le G$. Show that H is isomorphic with the dihedral group of order 2n.
- 5B) Let \mathbb{F}_n denote the field with n elements.
- (a) Construct explicitly the field with 64 elements by taking a degree 3 irreducible polynomial in \mathbb{F}_4 .
 - (b) Determine the order and structure of the Galois group G of this extension.
 - (c) How many primitive elements over \mathbb{F}_4 does \mathbb{F}_{64} contain? Justify.