August 1995 Algebra Qualifying Exams

- 1A) Let $M = \begin{bmatrix} -12 & 18 \\ -8 & 12 \end{bmatrix}$. Find all eigenvalues of M and M^{100} .
- 1B) Let V be a finite dimensional vector space over a field F and let $(\ ,\):V\times V\to F$ be a bilinear form. Prove that

$$\dim_F \{v \in V : (v, w) = 0 \text{ for all } w \in V\} = \dim_F \{w \in V : (v, w) = 0 \text{ for all } v \in V\}.$$

- 2A) Is it possible for the symmetric group S_4 to act transitively on a set with 3 elements.
- 2B) Let $GL_n(R)$ be the group of invertible matrices with real coefficients. Let V be a vector space R^3 of column vectors with coordinates x_1, x_2, x_3 and let $GL_3(R)$ act by linear transformation on V. Let $G \subseteq GL_n(R)$ be the subgroup of matrices which preserve the subspace $x_3 = 0$. Prove that there exists a normal subgroup $H \subseteq G$ such that G/H is isomorphic to $GL_2(R)$. Describe H explicitly.
- 3A) (a) Give an example of an ideal in a commutative ring with is prime but not maximal.
- (b) Provethat if $f: R \to S$ is a homomorphism of commutative rings and $I \subseteq S$ is a prime ideal, then $f^{-1}(I)$ is prime. Give an example where I is maximal but $f^{-1}(I)$ is not maximal.
- 3B) Does there exist a ring R with 10 elements such that if $a, b \in R$, $a \neq 0$, $b \neq 0$ then $ab \neq 0$.
- 4A) Let $E \subseteq F \subseteq L$ be three fields. Prove or give a counterexample to the following:
 - (a) L is Galois over E implies L is Galois over F and F is Galois over E.
 - (b) L is Galois over F and F is Galois over E implies L is Galois over E.
- 4B) Let f be a quintic polynomial with coefficients in \mathbb{Q} such that the splitting field K of f has a Galois group isomorphic to the dihedral group D_5 . Prove that there exists a unique quadratic field $\mathbb{Q}\left(\sqrt{d}\right) \subseteq K$.
- 5A) Let R be a noetherian commutative ring.
- (a) Suppose $\varphi: M_1 \to M_2$ is a surjective homomorphism of R-modules. Prove that for any module N, the homomorphism $Hom_R(M_2, N) \to Hom_R(M_1, N)$ induced by composition with φ is injective.
- (b) Suppose $\varphi: N_1 \to N_2$ is a surjective homomorphism of R-modules. Prove that for any free R-module F, the homomorphism $Hom_R(F, N_1) \to Hom_R(F, N_2)$ induced by composition with φ is surjective.
- 5B) Let R be the polynomial ring C[T] and let M be the vector space of column vectors C^3 . Make M into an R-module by letting C act by scalar multiplication and letting T act by the matrix $\begin{bmatrix} 2 & 7 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1+i \end{bmatrix} = A.$ Write down a direct sum of cyclic R-modules which is isomorphic to M.