
August 1994
Algebra Qualifying Exam

SOLUTIONS

1A) Suppose that A is an n × n complex matrix and Ak = I for some k ∈ Z+. Prove that A can be
diagonalized.
Answer: As A is over C we are guaranteed a Jordan Canonical Form (JCF) which is unique up to conjugation
over C. Therefore J = P−1AP and thus PJP−1 = A. So

(
PJP−1

)k = Ak = I implies that PJkP−1 = I
and so Jk = I. The only way that Jk = I is if J is diagonal.

1B) True or false; for each give either a brief reason or a counterexample.
(a) If a matrix A is both Hermitian and unitary then A = ±I.
(b) If V is a finite dimensional vector space and T : V → V is a linear transformation then V =

Im (T )⊕ ker (T ).
(c) Eigenvalues of orthogonal matrices are real numbers.

Answer: (a) False, look at
[
−1 0
0 1

]
and

[
1 0
0 −1

]
. They are Hermitian as ĀT = A and unitary as ĀT = A−1

(or ĀT A = I).
(b) False, take V as the polynomials of degree ≤ n and T the differential operator. So Im (T ) is polyno-

mials degree ≤ n − 1 and kerT is the constant operatornametions and So Im (T ) ∩Ker (T ) 6= ∅. The only
thing that holds is DimV = Dim Im +Dim ker.

(c) False, recall that orthogonal implies that AAT = I. So take[
0 −1
1 0

] [
0 1
−1 0

]
=

[
1 0
0 1

]
but the characteristic equation of the first matrix is x2 + 1 and so has eigenvalues ±i.

2A) How many essentially distinct ways can A4 act transitively on a set with 3 elements?
Answer: We first note that for any group G and a nonempty set A there is a bijection between the actions
of G on A and the homomorphisms of G to SA. So we need to look at

ϕ : A4 → S3.

Note that the only transitive subgroups of S3 are S3 and A3. To find all homomorphisms we must see how
many possible kernels there are which is the same as finding all possible normal subgroups: The only possible
normal subgroups at 1, A4, and the Klein 4 group V4 (Z2 × Z2). The fundamental homomorphism theorem
says that A4/ ker ϕ ∼= Im ϕ and so

A4/1 = A4 and this image is too large
A4/A4 = 1 and this is not a transitive action
A4/V4

∼= Z3 which is a transitive action.

So there is only one essentially distinct way.

2B) Suppose G is a group, H ≤ G and x2 ∈ H for all x ∈ G. Show that H C G and G/H is abelian.
Answer: If a subgroup contains the commutator subgroup then it is normal so we need to show that G′ ⊂ H.
Let x−1y−1xy ∈ G′. As

x−1y−1xy = x−1y−1x−1y−1yxxyxxx−1x−1

=
(
x−1y−1

)2
(yxx)2

(
x−1

)2 ∈ H

so G′ ⊆ H and so H C G. As
(
a−1b−1ab

)
H = H, (aH) (bH) = (bH) (aH).

3A) Show that every nonzero prime ideal in the ring Z [i] of Gaussian integers is maximal.
Answer: As Z [i] is a Euclidean domain (take d = a2 + b2 for the norm of a + bi ∈ Z [i]) and ED =⇒ PID,
we know that Z [i] is a PID. So show that in a PID every nonzero prime ideal is maximal. Suppose P 6= R is
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a prime ideal in R. P = 〈p〉 for some prime element p ∈ P as Z [i] is a PID. Suppose I is an ideal such that
P ( I. Show I = R. So there is an a ∈ I such that a /∈ P . So gcd (a, p) = 1 and thus there are s, t ∈ Z [i]
such that 1 = as + pt. As as ∈ I thus 1 ∈ I and I = R. So P is maximal.

3B) Suppose that R is a noncommutative semisimple ring and that |R| = 81. Describe the center of R as
completely as possible.
Answer: As R is finite it is Artinian. By the Weddeburn Artin structure theorem we know that R is
isomorphic to a direct sum of full matrix algebras over a division ring. If we have a finite division ring then
it is a field by another theorem of Weddeburn. As 81 = 34 the only possibility is a 2 × 2 matrix over F3.
Now assume that A ∈ Z (R), the center of R, then for any B ∈ R we have AB = BA and thus[

a b
c d

] [
e f
g h

]
=

[
e f
g h

] [
a b
c d

]
=⇒[

ae + bg af + bh
ec + dg cf + dh

]
=

[
ae + fc eb + fd
ga + hc gb + hd

]
and so bg = cf and as g and f are arbitrary, b = c = 0. So af = fd and so a = d. So the center are just the
scalar multiples of the identity matrix I and thus |Z (R)| = 3.

4A) If f (x) = x6 + x4 − 3x2 − 3 ∈ Q [x], find a splitting field K ⊆ C for f (x), and determine the Galois
group of f (x).
Answer: We first note that f is reducible. f =

(
x2 + 1

) (
x4 − 3

)
which has roots ±i,± 4

√
3,± 4

√
3i and thus

splitting field Q
(

4
√

3, i
)

= K. We know that

[K : Q] =
[
K : Q

(
4
√

3
)] [

Q
(

4
√

3
)

: Q
]

= 2 · 4 = 8

We also know that x2 + 1 splits over the splitting field for x4− 3 and thus we only consider that G ≤ S4. So
G is D4 as G is not abelian and D4 is the only nonabelian group of order 8 of G. There are 3 of these and
they are all conjugate as they are the Sylow 3-subgroups of S4. Another (horrible) approach is to compute
the resolvent cubic of x4 − 3.

4B) Suppose that f (x) ∈ Q [x], g (x) = f
(
x2

)
, K ⊆ C is a splitting field for g (x) and [K : Q] is odd. Show

that f (x) and g (x) have the same Galois group.
Answer: Say L is the splitting field of f (x) with roots αi. Then we know that the roots of g (x) are ±√αi.
Thus is [L : Q] = n = 2m + 1 then we know that [K : Q] = 2k · n for some k as each extension field for the
roots

√
αi is either 1 or 2. But as [K : Q] is odd we know that k = 0 and f and g have the same splitting

field and thus the same Galois group.

5A) If A = 〈a, b : 45a = 63b = 105 (a + b) = 0〉, then describe A as a direct sum of cyclic groups and determine
|A|.
Answer: State the correct theory and then proceed to do SNF as follows: 45 0

0 63
105 105

 →

45 0
0 63
15 105

 →

15 105
0 63
45 0

 →

15 0
0 63
45 315

 →

15 0
0 63
0 0

 →

15 60
0 63
0 0

 →

 15 60
−15 3
0 0

 →

 3 −15
60 15
0 0

 →

 3 0
60 315
0 0

 →

3 0
0 315
0 0


and thus A ∼= Z3 ⊕ Z315 and the order of A is 945.

5B) Give a proof or a counterexample.
(a) If R is a PID and M is a finitely generated torsion free R-module, then M is free.
(b) If R is an ID and M is a finitely generated torsion free R-module, then M is free.
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Answer: (a) If R is a PID and M is finitely generated torsion free R-module then M is free. M ∼=
R/I1⊕R/I2⊕ · · ·⊕R/In with I1 ⊆ I2 ⊆ · · · ⊆ In. Since M is torsion free each ideal Ik is the zero ideal and
thus M ∼= Rn.

(b) R = Z [x] and the ideal 〈2, x〉 = M is an R-module. The module M is finitely generated and torsion
free. However M is not free since the ideal isn’t principal no single element generates it. Any two or more
elements are linearly independent since ab− ba = 0. Thus the module cannot have a basis.
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