August 1994 Algebra Qualifying Exam SOLUTIONS

1A) Suppose that A is an $n \times n$ complex matrix and $A^k = I$ for some $k \in \mathbb{Z}^+$. Prove that A can be diagonalized.

Answer: As A is over \mathbb{C} we are guaranteed a Jordan Canonical Form (JCF) which is unique up to conjugation over \mathbb{C} . Therefore $J = P^{-1}AP$ and thus $PJP^{-1} = A$. So $(PJP^{-1})^k = A^k = I$ implies that $PJ^kP^{-1} = I$ and so $J^k = I$. The only way that $J^k = I$ is if J is diagonal.

1B) True or false; for each give either a brief reason or a counterexample.

- (a) If a matrix A is both Hermitian and unitary then $A = \pm I$.
- (b) If V is a finite dimensional vector space and $T:V\to V$ is a linear transformation then $V=\operatorname{Im}(T)\oplus\ker(T)$.
 - (c) Eigenvalues of orthogonal matrices are real numbers.

Answer: (a) False, look at $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. They are Hermitian as $\bar{A}^T = A$ and unitary as $\bar{A}^T = A^{-1}$ (or $\bar{A}^T A = I$).

- (b) False, take V as the polynomials of degree $\leq n$ and T the differential operator. So Im (T) is polynomials degree $\leq n-1$ and ker T is the constant operatornametions and So Im $(T) \cap Ker(T) \neq \emptyset$. The only thing that holds is $DimV = Dim \operatorname{Im} + Dim \operatorname{ker}$.
 - (c) False, recall that orthogonal implies that $AA^T = I$. So take

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

but the characteristic equation of the first matrix is $x^2 + 1$ and so has eigenvalues $\pm i$.

2A) How many essentially distinct ways can A_4 act transitively on a set with 3 elements?

Answer: We first note that for any group G and a nonempty set A there is a bijection between the actions of G on A and the homomorphisms of G to S_A . So we need to look at

$$\varphi: A_4 \to S_3.$$

Note that the only transitive subgroups of S_3 are S_3 and A_3 . To find all homomorphisms we must see how many possible kernels there are which is the same as finding all possible normal subgroups: The only possible normal subgroups at 1, A_4 , and the Klein 4 group V_4 ($\mathbb{Z}_2 \times \mathbb{Z}_2$). The fundamental homomorphism theorem says that $A_4/\ker \varphi \cong \operatorname{Im} \varphi$ and so

 $A_4/1 = A_4$ and this image is too large

 $A_4/A_4 = 1$ and this is not a transitive action

 $A_4/V_4 \cong Z_3$ which is a transitive action.

So there is only one essentially distinct way.

2B) Suppose G is a group, $H \leq G$ and $x^2 \in H$ for all $x \in G$. Show that $H \triangleleft G$ and G/H is abelian. **Answer:** If a subgroup contains the commutator subgroup then it is normal so we need to show that $G' \subset H$. Let $x^{-1}y^{-1}xy \in G'$. As

$$x^{-1}y^{-1}xy = x^{-1}y^{-1}x^{-1}y^{-1}yxxyxxx^{-1}x^{-1}$$
$$= (x^{-1}y^{-1})^{2}(yxx)^{2}(x^{-1})^{2} \in H$$

so $G' \subseteq H$ and so $H \triangleleft G$. As $\left(a^{-1}b^{-1}ab\right)H = H$, $\left(aH\right)\left(bH\right) = \left(bH\right)\left(aH\right)$.

3A) Show that every nonzero prime ideal in the ring $\mathbb{Z}[i]$ of Gaussian integers is maximal.

Answer: As $\mathbb{Z}[i]$ is a Euclidean domain (take $d = a^2 + b^2$ for the norm of $a + bi \in \mathbb{Z}[i]$) and ED \Longrightarrow PID, we know that $\mathbb{Z}[i]$ is a PID. So show that in a PID every nonzero prime ideal is maximal. Suppose $P \neq R$ is

1

a prime ideal in R. $P = \langle p \rangle$ for some prime element $p \in P$ as $\mathbb{Z}[i]$ is a PID. Suppose I is an ideal such that $P \subsetneq I$. Show I = R. So there is an $a \in I$ such that $a \notin P$. So $\gcd(a, p) = 1$ and thus there are $s, t \in \mathbb{Z}[i]$ such that 1 = as + pt. As $as \in I$ thus $1 \in I$ and I = R. So P is maximal.

3B) Suppose that R is a noncommutative semisimple ring and that |R| = 81. Describe the center of R as completely as possible.

Answer: As R is finite it is Artinian. By the Weddeburn Artin structure theorem we know that R is isomorphic to a direct sum of full matrix algebras over a division ring. If we have a finite division ring then it is a field by another theorem of Weddeburn. As $81 = 3^4$ the only possibility is a 2×2 matrix over \mathbb{F}_3 . Now assume that $A \in \mathbb{Z}(R)$, the center of R, then for any $B \in R$ we have AB = BA and thus

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} & = & \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Longrightarrow$$

$$\begin{bmatrix} ae + bg & af + bh \\ ec + dg & cf + dh \end{bmatrix} & = & \begin{bmatrix} ae + fc & eb + fd \\ ga + hc & gb + hd \end{bmatrix}$$

and so bg = cf and as g and f are arbitrary, b = c = 0. So af = fd and so a = d. So the center are just the scalar multiples of the identity matrix I and thus |Z(R)| = 3.

4A) If $f(x) = x^6 + x^4 - 3x^2 - 3 \in \mathbb{Q}[x]$, find a splitting field $K \subseteq \mathbb{C}$ for f(x), and determine the Galois group of f(x).

Answer: We first note that f is reducible. $f = (x^2 + 1)(x^4 - 3)$ which has roots $\pm i, \pm \sqrt[4]{3}, \pm \sqrt[4]{3}i$ and thus splitting field $\mathbb{Q}(\sqrt[4]{3}, i) = K$. We know that

$$[K:\mathbb{Q}] = \left[K:\mathbb{Q}\left(\sqrt[4]{3}\right)\right]\left[\mathbb{Q}\left(\sqrt[4]{3}\right):\mathbb{Q}\right] = 2\cdot 4 = 8$$

We also know that $x^2 + 1$ splits over the splitting field for $x^4 - 3$ and thus we only consider that $G \le S_4$. So G is D_4 as G is not abelian and D_4 is the only nonabelian group of order 8 of G. There are 3 of these and they are all conjugate as they are the Sylow 3-subgroups of S_4 . Another (horrible) approach is to compute the resolvent cubic of $x^4 - 3$.

4B) Suppose that $f(x) \in \mathbb{Q}[x]$, $g(x) = f(x^2)$, $K \subseteq \mathbb{C}$ is a splitting field for g(x) and $[K : \mathbb{Q}]$ is odd. Show that f(x) and g(x) have the same Galois group.

Answer: Say L is the splitting field of f(x) with roots α_i . Then we know that the roots of g(x) are $\pm \sqrt{\alpha_i}$. Thus is $[L:\mathbb{Q}] = n = 2m + 1$ then we know that $[K:\mathbb{Q}] = 2^k \cdot n$ for some k as each extension field for the roots $\sqrt{\alpha_i}$ is either 1 or 2. But as $[K:\mathbb{Q}]$ is odd we know that k = 0 and f and g have the same splitting field and thus the same Galois group.

5A) If $A = \langle a, b : 45a = 63b = 105 (a + b) = 0 \rangle$, then describe A as a direct sum of cyclic groups and determine |A|.

Answer: State the correct theory and then proceed to do SNF as follows:

$$\begin{pmatrix}
45 & 0 \\
0 & 63 \\
105 & 105
\end{pmatrix}
\rightarrow
\begin{pmatrix}
45 & 0 \\
0 & 63 \\
15 & 105
\end{pmatrix}
\rightarrow
\begin{pmatrix}
15 & 105 \\
0 & 63 \\
45 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
15 & 0 \\
0 & 63 \\
45 & 315
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
15 & 0 \\
0 & 63 \\
0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
15 & 60 \\
0 & 63 \\
0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
15 & 60 \\
-15 & 3 \\
0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & -15 \\
60 & 15 \\
0 & 0
\end{pmatrix}
\rightarrow$$

$$\begin{pmatrix}
3 & 0 \\
60 & 315 \\
0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & 0 \\
0 & 315 \\
0 & 0
\end{pmatrix}$$

and thus $A \cong \mathbb{Z}_3 \oplus \mathbb{Z}_{315}$ and the order of A is 945.

- 5B) Give a proof or a counterexample.
 - (a) If R is a PID and M is a finitely generated torsion free R-module, then M is free.
 - (b) If R is an ID and M is a finitely generated torsion free R-module, then M is free.

Answer: (a) If R is a PID and M is finitely generated torsion free R-module then M is free. $M \cong R/I_1 \oplus R/I_2 \oplus \cdots \oplus R/I_n$ with $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$. Since M is torsion free each ideal I_k is the zero ideal and thus $M \cong R^n$.

(b) $R = \mathbb{Z}[x]$ and the ideal $\langle 2, x \rangle = M$ is an R-module. The module M is finitely generated and torsion free. However M is not free since the ideal isn't principal no single element generates it. Any two or more elements are linearly independent since ab - ba = 0. Thus the module cannot have a basis.