August 1994 Algebra Qualifying Exam

- 1A) Suppose that A is an $n \times n$ complex matrix and $A^k = I$ for some $k \in \mathbb{Z}^+$. Prove that A can be diagonalized.
- 1B) True or false; for each give either a brief reason or a counterexample.
 - (a) If a matrix A is both Hermitian and unitary then $A = \pm I$.
- (b) If V is a finite dimensional vector space and $T:V\to V$ is a linear transformation then $V=\operatorname{Im}(T)\oplus\ker(T)$.
 - (c) Eigenvalues of orthogonal matrices are real numbers.
- 2A) How many essentially distinct ways can A_4 act transitively on a set with 3 elements?
- 2B) Suppose G is a group, $H \leq G$ and $x^2 \in H$ for all $x \in G$. Show that $H \triangleleft G$ and G/H is abelian.
- 3A) Show that every nonzero prime ideal in the ring $\mathbb{Z}[i]$ of Gaussian integers is maximal.
- 3B) Suppose that R is a noncommutative semisimple ring and that |R| = 81. Describe the center of R as completely as possible.
- 4A) If $f(x) = x^6 + x^4 3x^2 3 \in \mathbb{Q}[x]$, find a splitting field $K \subseteq \mathbb{C}$ for f(x), and determine the Galois group of f(x).
- 4B) Suppose that $f(x) \in \mathbb{Q}[x]$, $g(x) = f(x^2)$, $K \subseteq \mathbb{C}$ is a splitting field for g(x) and $[K : \mathbb{Q}]$ is odd. Show that f(x) and g(x) have the same Galois group.
- 5A) If $A = \langle a, b : 45a = 63b = 105 (a + b) = 0 \rangle$, then describe A as a direct sum of cyclic groups and determine |A|.
- 5B) Give a proof or a counterexample.
 - (a) If R is a PID and M is a finitely generated torsion free R-module, then M is free.
 - (b) If R is an ID and M is a finitely generated torsion free R-module, then M is free.