
August 1993
Algebra Qualifying Exam

1A) Determine all A that have distinct eigenvalues and A2 = 3A� 2I.
Answer: A3 = 3A � 2I =) (A� I) (A� 2I) = 0 so the minimal polynomial is either x � 1, x � 2, or
(x� 1) (x� 2). In all 3 of these cases, the matrices are diagonalizable. Thus up to similarity the following
are possibilities:

[1] , [2] , or
�
1 0
0 2

�

1B) If A =
�
6 �2
�2 3

�
, �nd an orthogonal matrix P such that P�1AP is diagonal.

Answer: A has eigenvalues coming from (6� x) (3� x)� 4 = x2 � 9x+ 14 = (x� 2) (x� 7) = 0 and thus

we have eigenvalues of 2 and 7. The corresponding eigenvectors are
1p
5

�
1
2

�
and

1p
5

�
�2
1

�
.

2A) Let � =
p
3 + 2

p
3. Find the minimal polynomial for �, the Galois closure of Q (�), and the Galois

group of the Galois closure over Q.
Answer: (a) �2 = 3+2

p
3 and so

�
�2 � 3

�
= 2

p
3 and so

�
�2 � 3

�2
= 12. Thus we have minimal polynomial

m� (x) = �4 � 6�2 � 3. (b) x = �
p
3� 2

p
3 and so K = Q

�p
3 + 2

p
3;
p
3� 2

p
3
�
. (c) We note that

m� (x) is irreducible by Eisenstein and so we will have Galois group G � S4. For its size we have that

Q � Q
�q

3 + 2
p
3

�
� Q

�q
3 + 2

p
3;

q
3� 2

p
3

�
with �

Q
�q

3 + 2
p
3;

q
3� 2

p
3

�
: Q
�

=

�
Q
�q

3 + 2
p
3;

q
3� 2

p
3

�
: Q
�q

3 + 2
p
3

���
Q
�q

3 + 2
p
3

�
: Q
�

= 2 � 4 = 8

As m� (x) has two real roots and two complex nonreal roots we know that we have a four cycle and a 2
cycle. These generate the group and one can show that it is isomorphic to the dihedral group of order 8.

2B) Let f (x) = x3 � 2. Find the Galois groups over
(a) Q
(b) F7
(c) F9

Answer: (a) The splitting �eld is Q
�
3
p
2; i
�
which is degree 6 and so G = S3. (b) By direct calculation

f (0) = 5, f (1) = 6, f (2) = 6, f (3) = 4, f (4) = 6, f (5) = 4, and f (6) = 4 we know that f (x) is irreducible.
f (x) splits over F7 [x] =



x3 � 2

�
and as this is a degree 3 extension we know that G = Z3.

(c) Over F3 we have that x3 � 2 = x3 +1 = (x+ 1) (x+ 1) (x+ 1) = x3 +3x2 +3x+1 = x3 +1. And so
G = f1g is trivial.

3A) Show that a �nite group G generated by a and b of both order 2 is dihedral of order 2m for some
m 2 Z+.
Answer: Recall that Dm =



�; � : �m = �2 = 1; �� = ���1

�
. First we note that as G is a �nite group there

is some m 2 Z such that (ab)m = 1. Also a2 = b2 = 1. Let ab = � and b = � . Then �m = �2 = 1. Now we
need to check the other relation.

�� = abb = a = b (ba) = ���1.

3B) How many groups are there of order 63?
Answer: 4 (2 abelian and 2 nonabelian). We prove this by �rst considering the following facts:
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i) Let H and K be subgroups of G. The number of distinct ways of writing each element of the set HK

in the form hk, h 2 H and k 2 K = is jH \Kj. If jH \Kj = 1 then it is unique. (jHKj = jHj jKj
jH \Kj ).

ii) If H and K are normal in G and H \K = 1 then HK �= H �K, the direct sum.
iii) Let H and K be groups and let ' be a homomorphism from K into Aut (H). Let � denote the (left)

action of K on H determined by '. Let G be the set of ordered pairs (h; k) with h 2 H and k 2 K and
de�ne the multiplication on G :

(h1; k1) (h2; k2) = (h1k1 � h2; k1k2)

This muliplication makes G into a group of order jGj = jHj jKj. It also makes H C G and H \K = 1. For
all h 2 H and k 2 K, khk�1 = k � h = ' (k) (h).
iv) Suppose G is a group with subgroupsH andK such thatH C G andH\K = 1. Let ' : K ! Aut (H)

be the homomorphism de�ned by mapping k 2 K to the automorphism of left conjugation by k on H. Then
HK �= H oK. In particular if G = HK with H and K satisfying H C G and H \K = 1, then G is the
semidirect product of H and K.
Proof: As H C G we know that HK � G. Every element of HK can be written uniquely by (i) in the

form hk for some h 2 H and k 2 K. Thus the map kh ! (h; k) is a set bijection from HK onto H oK.
Check that this is a homomorphism. Thus as it is one-to-one and onto, it is an isomorphism.
Now we can prove our results. As 63 = 327 we know that by the Sylow theorems there is a unique Sylow

7-subgroup of order 7. There are either 1 or 7 Sylow 3-subgroups. The Sylow 3-subgroups have size 9 and
are either Z9 or Z3 � Z3. The the Sylow 7-subgroup is normal as it is unique. Aut (Syl (7)) �= Z6. The
possible group homomorphisms from the Sylow 3-subgroups are the trivial (for both) which gives the direct
product (this is the case where there is one Sylow 3-subgroup).

Z9 ! Z6 both cyclic so possibilities are
1 7! 0

1 7! 3

Thus for any a 2 Z6 we would have the three corresponding actions of x � a 7! a (trivial action which gives
direct product) or x � a 7! 3a or Note that 5a = a�1 and so the action by conjugation is the same. So the
only semidirect product we have is where (h1k1) + (h2k2) = (h1 + 3h2; k1 + k2). Similarly for the Sylow
3-subgroup Z3 � Z3.
Thus there are a total of four, Z9 � Z7, Z3 � Z3 � Z7, Z7 o Z9, and Z7 o (Z3 � Z3).

4A) R = C [x; y].
(a) Find a maximal ideal that does not contain xy.
(b) Find a prime ideal that is not maximal that does not contain xy.

Answer: (a) hx� i; y + ii (b) hx+ yi

4B) If A is a �nitely generated Z-module, describe R
Z A as completely as possible.
Answer: A �= Zn1 � � � � � Zns � Zm where nijni+1 and m is the torsion free rank. Thus

R
Z A �= R
Z Zn1 � � � � � Zns � Zm
�= R
Z Zn1 �R
Z Zn2 � :::�R
Z Zns �R
Z Zm
�= R
Z Zn1 �R
Z Zn2 � :::�R
Z Zns �Rm
�= R=n1R� � � � �R=nsR�Rm (last step is hw prob Grove #40 ch.4)

5A) (a) If R is a commutative ring, show that the set of nilpotent elements of R is an ideal in R.
(b) Prove or disprove: If R is an arbitrary ring, then the set of nilpotent elements is an ideal.

Answer: (a) I = fa : an = 0g is an ideal. Let a; b 2 I then there is an m;n such that am = bn = 0. Then
we use the binomial expansion theorem we have that (a� b)m+n = 0. Thus a�b 2 I. Now take an arbitrary
r 2 R. Then (ra)m = rmam = rm0 = 0.

(b) Counterexample: Take M2 (R) and let x =
�
0 1
0 0

�
and y =

�
0 0
�1 0

�
. Then x � y =

�
0 1
1 0

�
and

(x� y)n 6= 0 for all n. This is an element of order 2 which is just a re�ection and so odd powers keep x� y
as x� y and even powers give the identity matrix.
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5B) Show that an ID with 1 satisfying the DCC (descending chain condition) for ideals must be a �eld.
Answer: Let I = hxi E R be an ideal. Then as R is Artinian (DCC) we have I � I2 � I3 � � � � must
terminate. So there is an n such that for all k � n we have In = Ik. If In = hxin = hxni = 0 then we have
that xn = 0 but it cannot as R is an ID. If In = In+k then in particular In = In+1. So hxni =



xn+1

�
and

so there is an r 2 R such that xn = rxn+1 implies that 1 = rx and so x 2 U (R). Thus hxi = R for all
x 6= 0 2 R and so R is a �eld.
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