August 1993
Algebra Qualifying Exam

1A) Determine all A that have distinct eigenvalues and A% = 34 — 21I.

Answer: A3 = 3A —2] = (A—1I)(A—2I) = 0 so the minimal polynomial is either x — 1, z — 2, or
(x — 1) (z — 2). In all 3 of these cases, the matrices are diagonalizable. Thus up to similarity the following
are possibilities:

1. 2or g )

6 -2
-2 3
Answer: A has eigenvalues coming from (6 —z) (3 —z) —4 = 2% — 92 + 14 = (z — 2) (x — 7) = 0 and thus

1IB)If A= [ } , find an orthogonal matrix P such that P~' AP is diagonal.

1 1 [—
we have eigenvalues of 2 and 7. The corresponding eigenvectors are ﬁ B} and — { 2} .
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2A) Let @ = /3 +2v/3. Find the minimal polynomial for «, the Galois closure of Q («), and the Galois
group of the Galois closure over Q.
Answer: (a) a? = 34+2v/3 and so (a2 — 3) = 2v/3 and so (a2 — 3)2 = 12. Thus we have minimal polynomial

Ma (z) = a* — 6a% — 3. (b) z = £v/3+ 23 and soK:Q(\/3+2\/§,\/3f2\/§). (c) We note that

Mg () is irreducible by Eisenstein and so we will have Galois group G < S4. For its size we have that

QS@(W) SQ(\/3+2\/§,\/3—2\/§>

with
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As m, () has two real roots and two complex nonreal roots we know that we have a four cycle and a 2
cycle. These generate the group and one can show that it is isomorphic to the dihedral group of order 8.

2B) Let f (r) = 2 — 2. Find the Galois groups over

Answe ( ) The splitting field is Q (V/2,i) which is degree 6 and so G = S5. (b) By direct calculation
f( ):5 f(1)=6,f(2)=6,f(3)=4, f(4) =6, f(5) =4, and f (6) = 4 we know that f (x) is irreducible.
[ (z) splits over F7 [z] / (* — 2) and as this is a degree 3 extension we know that G = Zj.

(c) Over F3 we have that 2 —2 =23 +1=(z+ 1) (z+ 1) (z+1) =23 +322 +3z+1 =22+ 1. And so
G = {1} is trivial.

3A) Show that a finite group G generated by a and b of both order 2 is dihedral of order 2m for some
m € ZT.

Answer: Recall that D,, = (0,7 : 0™ =72 = 1,07 = 70~ !). First we note that as G is a finite group there
is some m € Z such that (ab)™ = 1. Also a? = b?> = 1. Let ab =0 and b = 7. Then 0™ = 72 = 1. Now we
need to check the other relation.

or =abb=a=>b(ba) = 70"

3B) How many groups are there of order 637
Answer: 4 (2 abelian and 2 nonabelian). We prove this by first considering the following facts:



i) Let H and K be subgroups of G. The number of distinct ways of writing each element of the set HK
H||K
in the form hk, h € H and k € K =is |[H N K|. If |H N K| =1 then it is unique. (|[HK| = |H]1K]

|H N K| )
ii) If H and K are normal in G and H N K =1 then HK = H x K, the direct sum.
iii) Let H and K be groups and let ¢ be a homomorphism from K into Aut (H). Let - denote the (left)
action of K on H determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and k € K and

define the multiplication on G :
(h1, k1) (ha, ko) = (haky - ho, k1ko)

This muliplication makes G into a group of order |G| = |H||K]|. It also makes H <« G and H N K = 1. For
alh€ Hand k€ K, khk~' =k-h = (k) (h).

iv) Suppose G is a group with subgroups H and K such that H << G and HNK = 1. Let p : K — Aut (H)
be the homomorphism defined by mapping k& € K to the automorphism of left conjugation by k& on H. Then
HK =2 H x K. In particular if G = HK with H and K satisfying H << G and H N K = 1, then G is the
semidirect product of H and K.

Proof: As H < G we know that HK < G. Every element of HK can be written uniquely by (i) in the
form hk for some h € H and k € K. Thus the map kh — (h, k) is a set bijection from HK onto H x K.
Check that this is a homomorphism. Thus as it is one-to-one and onto, it is an isomorphism.

Now we can prove our results. As 63 = 327 we know that by the Sylow theorems there is a unique Sylow
7-subgroup of order 7. There are either 1 or 7 Sylow 3-subgroups. The Sylow 3-subgroups have size 9 and
are either Zg or Zs & Zs. The the Sylow 7-subgroup is normal as it is unique. Aut (Syl (7)) = Zg. The
possible group homomorphisms from the Sylow 3-subgroups are the trivial (for both) which gives the direct
product (this is the case where there is one Sylow 3-subgroup).

Zg — Zg both cyclic so possibilities are
1 — 0
1 — 3

Thus for any a € Zg we would have the three corresponding actions of x - a — a (trivial action which gives
direct product) or z - a — 3a or Note that 5a = a~! and so the action by conjugation is the same. So the
only semidirect product we have is where (h1k1) + (hoka) = (h1 + 3ho, k1 + ko). Similarly for the Sylow
3-subgroup Zs3 & Zs.

Thus there are a total of four, Zg ® Zy, Zs ® Zs & Ly, Ly X Ly, and Zy x (Zs S Z3).

4A) R = Clz,y].

(a) Find a maximal ideal that does not contain xy.

(b) Find a prime ideal that is not maximal that does not contain zy.
Answer: (a) (x — i,y +1) (b) (z +y)

4B) If A is a finitely generated Z-module, describe R ®7 A as completely as possible.
Answer: AXZ, X -+ X ZLy,, X Z™ where n;|n;11 and m is the torsion free rank. Thus

1%

R®z A R®z Ly X -+ X L, X L™
R®ZZn1 XR®ZZn2 X ... XR@ZZnS X R®@z Z™
R®z Zp, x RQz Zp, X ... X Rz Zn, x R™

R/niR x -+ x R/nsR x R™ (last step is hw prob Grove #40 ch.4)

1R
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5A) (a) If R is a commutative ring, show that the set of nilpotent elements of R is an ideal in R.
(b) Prove or disprove: If R is an arbitrary ring, then the set of nilpotent elements is an ideal.
Answer: (a) I = {a:a" =0} is an ideal. Let a,b € I then there is an m,n such that ¢ = b” = 0. Then
we use the binomial expansion theorem we have that (a — b)m+n = 0. Thus a—b € I. Now take an arbitrary
r € R. Then (ra)™ = r™a™ = r™0 = 0.
0 0 1

(b) Counterexample: Take My (R) and let x = {8 (1)} and y = {_1 8} Then z —y = L 0} and

(x —y)" # 0 for all n. This is an element of order 2 which is just a reflection and so odd powers keep = — y
as x — y and even powers give the identity matrix.



5B) Show that an ID with 1 satisfying the DCC (descending chain condition) for ideals must be a field.
Answer: Let I = (z) < R be an ideal. Then as R is Artinian (DCC) we have I > I? > I3 > ... must
terminate. So there is an n such that for all & > n we have I" = I*. If I" = (2)" = (™) = 0 then we have
that 2 = 0 but it cannot as R is an ID. If I"™ = I"** then in particular I"™ = I"'. So (z") = (z"*') and
so there is an r € R such that 2" = rz"*! implies that 1 = rz and so € U (R). Thus {z) = R for all
x#0 € R and so R is a field.



