August 1993 Algebra Qualifying Exam

- 1A) Determine all A that have distinct eigenvalues and $A^2 = 3A 2I$.
- 1B) If $A = \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix}$, find an orthogonal matrix P such that $P^{-1}AP$ is diagonal.
- 2A) Let $\alpha = \sqrt{3 + 2\sqrt{3}}$. Find the minimal polynomial for α , the Galois closure of $\mathbb{Q}(\alpha)$, and the Galois group of the Galois closure over \mathbb{Q} .
- 2B) Let $f(x) = x^3 2$. Find the Galois groups over
 - (a) \mathbb{Q}
 - (b) \mathbb{F}_7
 - (c) \mathbb{F}_9
- 3A) Show that a finite group G generated by a and b of both order 2 is dihedral of order 2m for some $m \in \mathbb{Z}^+$.
- 3B) How many groups are there of order 63?
- 4A) $R = \mathbb{C}[x, y]$.
 - (a) Find a maximal ideal that does not contain xy.
 - (b) Find a prime ideal that is not maximal that does not contain xy.
- 4B) If A is a finitely generated \mathbb{Z} -module, describe $R \otimes_{\mathbb{Z}} A$ as completely as possible.
- 5A) (a) If R is a commutative ring, show that the set of nilpotent elements of R is an ideal in R.
 - (b) Prove or disprove: If R is an arbitrary ring, then the set of nilpotent elements is an ideal.
- 5B) Show that an ID with 1 satisfying the DCC (descending chain condition) for ideals must be a field.