August 1992 Algebra Qualifying Exam

1) Consider the system

For what values of c is this solvable?

Answer: By Gaussian elimination we see that c = 5 is the only solution.

2) Find a real matrix T, which is not diagonalizable over the reals and for which $T^7 = I$.

Answer: We know that $T^7 - I = 0$ so we have a polynomial $x^7 - 1 = 0$ and so for any $n \times n$ matrix the only possible minimal polynomials over \mathbb{R} are x - 1 and $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. So if we take the RCF of $x^6 + \ldots + 1$ then we will have a matrix that is not diagonalizable (as the minimal polynomial does not split into distinct linear factors) but that $A^7 = 1$.

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

3) Show that a group of order 48 must have a normal subgroup of order a power of 2.

Answer: $|G| = 48 = 2^4 \cdot 3$. So there are either 1 or 3 Sylow 2-subgroups of order 16. If there is one it must be normal and we are done. If not assume that there are 3 of them say A, B, and C. The order of the subset AB is $|AB| = \frac{|A| |B|}{|A \cap B|}$. Thus $16 \cdot 16 / |A \cap B| \le 48 = |G|$. The only possibilities are 16 and 8. But 16 is not a possibility as we have that $A \ne B$. Thus $|A \cap B| = 8$. As $[A : A \cap B] = [B : A \cap B] = 2$ we have that $A \cap B \lhd A$ and $A \cap B \lhd B$. So $AB \le N_G (A \cap B)$. But |AB| = 64 and as $N_G (A \cap B) \le G$ it must have order 48 and thus $N_G (A \cap B) = G$ and so $A \cap B \lhd G$ and has order $8 = 2^3$.

4) Let kbe a finite field with 7 elements. Let $f(x) = x^3 - 3$ and let α be a root of f(x). Finally let $l = k(\alpha)$. Factor f(x) into irreducible polynomials in l[x].

Answer: Without loss of generality we can take k to be \mathbb{Z}_7 . As $x^3 - 1 = (x+6)(x+3)(x+5) \in \mathbb{Z}_7[x]$ we know that if α is a root of $x^3 - 3$ then the other roots will be $\alpha \cdot \omega$ and $\alpha \cdot \omega^2$. These are the roots 1, 2, and 4 and so $f(x) = (x - \alpha)(x - 2\alpha)(x - 4\alpha)$.

5) Write down a principal ideal in $\mathbb{C}[x,y]$ which is not maximal. Write an ideal in $\mathbb{C}[x,y]$ which is not a principal ideal.

Answer: $\langle x \rangle$ is not a maximal ideal as $\mathbb{C}[x,y]/\langle x \rangle \cong \mathbb{C}[y]$ which is not a field. However we know that it is a prime ideal as $\mathbb{C}[y]$ is an integral domain. An ideal in $\mathbb{C}[x,y]$ which is not principal is $\langle x,y \rangle$.

6) Let G be the group of real 2×2 matrices of determinant 1, and let H be the subgroup of diagonal matrices. Find the normalizer of H in G, $N_G(H)$.

Answer:

(a) We need all matrices P such that $\det(P) = 1$ and $P^{-1}hP = h$ where $h \in H$.

$$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \begin{bmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{bmatrix}$$

$$= \begin{bmatrix} b_{11}a_{11} & b_{12}a_{22} \\ b_{21}a_{11} & b_{22}a_{22} \end{bmatrix} \begin{bmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{bmatrix}$$

$$= \begin{bmatrix} b_{11}a_{11}b_{22} - b_{12}a_{22}b_{21} & -b_{11}a_{11}b_{12} + b_{12}a_{22}b_{11} \\ b_{21}a_{11}b_{22} - b_{22}a_{22}b_{21} & -b_{21}a_{11}b_{12} + b_{22}a_{22}b_{11} \end{bmatrix}$$

1

This means that

$$b_{11}a_{11}b_{22} - b_{12}a_{22}b_{21} = a'_{11}$$

$$-b_{11}a_{11}b_{12} + b_{12}a_{22}b_{11} = 0$$

$$b_{21}a_{11}b_{22} - b_{22}a_{22}b_{21} = 0$$

$$-b_{21}a_{11}b_{12} + b_{22}a_{22}b_{11} = a'_{22}$$

for some $a'_{11}, a'_{22} \in \mathbb{R}$. This implies that

$$b_{11}a_{11}b_{22} - a_{11} - b_{12}a_{22}b_{21} = a'$$

$$b_{11}b_{12} (-a_{11} + a_{22}) = 0 \text{ for all } a_{11}, a_{22}$$

$$b_{21}b_{22} (-a_{11} + a_{22}) = 0 \text{ for all } a_{11}, a_{22}$$

As \mathbb{R} is an integral domain we know that either $b_{11}=0$ or $b_{12}=0$ and either $b_{21}=0$ or $b_{22}=0$. But we also know that $b_{11}b_{22}-b_{21}b_{12}=1$. Thus if $b_{11}=0$ then both b_{12} and $b_{21}\neq 1$, and thus we have matrices that look like

$$P_1 = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{11}^{-1} \end{bmatrix}$$
 and $P_2 = \begin{bmatrix} 0 & a_{12} \\ -a_{12}^{-1} & 0 \end{bmatrix}$

Thus the normalizer $N_G(H) = \langle P_1, P_2 \rangle$, the subgroup generated by the matrices P_1 and P_2 .

(b) Now we need to compute coset representatives. Take a coset

7) Give an example of two non-trivial modules $M \neq \{0\}$ and $N \neq \{0\}$ over a ring R such that $M \otimes_R N = \{0\}$. **Answer:** Take $M = \mathbb{Q}$, $R = \mathbb{Q}$ and $N = \mathbb{Z}_6$. We have that $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Z}_6 = 0$ as

$$\frac{x}{y} \otimes z = \frac{x}{6y} \otimes 6z = \frac{x}{6y} \otimes 0 = 0$$

As another example consider $\mathbb{Z}_9 \otimes_{\mathbb{Z}} \mathbb{Z}_2$. As the gcd (2,9) = 1 we know that there are $a, b \in \mathbb{Z}$ such that $a \cdot 9 + b \cdot 2 = 1$. Thus

$$x \otimes y = (2a + 9b) x \otimes y = 2ax \otimes y + x \otimes 9by$$
$$= 0 \otimes y + x \otimes 0 = 0 + 0 = 0$$

8) Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of abelian groups. Prove: If B has torsion elements then either A or C has torsion elements.

Answer: Assume that B has torsion elements. Thus there is a $b \neq 0 \in B$ such that for some $z \neq 0 \in \mathbb{Z}$ we have that zb = 0. As we have an exact sequence we know that f is 1-1 and g is onto. Assume that there are no torsion elements in A. Thus for all $a \in A$ we have that $f(a) \neq 0 \in B$. Now as f is 1-1 then we know that $A \cong \text{Im } (f) \leq B$. As A is torsion free thus Im (f) is Torsion free. Thus we know that $b \notin \text{Im } (f) = \ker(g)$. Thus $g(b) \neq 0 \in C$. Say $g(b) = c \neq 0$. But g(0) = g(zb) = zg(b) = 0 and thus c = g(b) is a Torsion element in C.

9) Suppose that T is a linear transformation on \mathbb{C}^n with $T^3=1$. Show that T must be diagonalizable. **Answer:** We have done most of these so far with the argument using that the minimal polynomial m(x) for T must divide and as x^3-1 has distinct factors over \mathbb{C} then so must m(x) and a matrix is diagonalizable if and only if its minimal polynomial has distinct linear factors. Another way of seeing this is that T must have a JCF J as we are over \mathbb{C} . Thus there is an invertible matrix A such that $AJA^{-1}=T$. Then we have that $\left(AJA^{-1}\right)^3=T^3=I$ and thus $AJ^3A^{-1}=I$ implies that $J^3=1$. So the Jordan form must have only entries on the main diagonal and is thus diagonal.