August 1992 Algebra Qualifying Exam

1) Consider the system

For what values of c is this solvable?

- 2) Find a real matrix T, which is not diagonalizable over the reals and for which $T^7 = I$.
- 3) Show that a group of order 48 must have a normal subgroup of order a power of 2.
- 4) Let kbe a finite field with 7 elements. Let $f(x) = x^3 3$ and let α be a root of f(x). Finally let $l = k(\alpha)$. Factor f(x) into irreducible polynomials in l[x].
- 5) Write down a principal ideal in $\mathbb{C}[x,y]$ which is not maximal. Write an ideal in $\mathbb{C}[x,y]$ which is not a principal ideal.
- 6) Let G be the group of real 2×2 matrices of determinant 1, and let H be the subgroup of diagonal matrices.
 - (a) Find the normalizer of H in G, $N_G(H)$.
 - (b) Find the representatives for the cosets in $N_G(H)$.
- 7) Give an example of two non-trivial modules $M \neq \{0\}$ and $N \neq \{0\}$ over a ring R such that $M \otimes_R N = \{0\}$.
- 8) Let $0 \to A \to B \to C \to 0$ be an exact sequence of abelian groups. Prove: If B has torsion elements then either A or C has torsion elements.
- 9) Suppose that T is a linear transformation on \mathbb{C}^n with $T^3 = 1$. Show that T must be diagonalizable.