1 Math 511b - Test 1 Review

1.1 Fields:

- 1. Let $K = \mathbb{Q}\left(\sqrt{2+\sqrt{2}}\right)$. Show that K is a Galois extension of \mathbb{Q} . What is the Galois group of K over \mathbb{Q} ?
- 2. The field $F = \mathbb{Q}(\sqrt{2}) \vee \mathbb{Q}(\sqrt[3]{2})$ is a simple extension of \mathbb{Q} . Find a particular primitive element that shows that F is a simple radical extension.
- 3. If $K \leq \mathbb{C}$ and K is algebraic over \mathbb{Q} show that π is transcendental over K.
- 4. Suppose $F_0 = \mathbb{F}_4$, the field with 4 elements. Set $F = F_0(t)$, the field of rational functions in the indeterminate t, and say K = F(a), with $a^3 = t$.
 - (a) Show that K is separable and normal over F, hence Galois over F.
 - (b) Determine the Galois group G(K:F).
- 5. Suppose F is a finite field of characteristic p.
 - (a) Show that every $a \in F$ has a unique p^{th} root in F.
 - (b) Show that every $f(x) \in F[x]$ is separable (it is sufficient to assume that f(x) is irreducible).
- 6. Set $S = \{\sqrt{p} : p \in \mathbb{N}\}$ and $K = \mathbb{Q}(S) \subseteq \mathbb{R}$. Show that $\sqrt[3]{17} \notin K$.
- 7. True or false: If K is a Galois extension of F and L is a Galois extension of K, then L is a Galois extension of F.
- 8. Determine with reasons the number of elements of multiplicative order 9 in the multiplicative group \mathbb{F}_{64}^* of the field with 64 elements.
- 9. Write C_2 for a cyclic group of order 2. Give an example of a field extension K of \mathbb{Q} , $K \subseteq \mathbb{C}$ and Galois over \mathbb{Q} with $Gal(K : \mathbb{Q}) \cong C_2 \times C_2 \times C_2$.
- 10. Suppose K is a Galois extension of F, and that $Gal(K:F) \cong D_4$, the dihedral group of order 8. Describe as completely as you can the set of intermediate fields L, $F \subset L \subset K$; how many are there, what are the degrees [L:F], which of them are Galois over F?
- 11. If $z = a + bi \in \mathbb{C}$, calculate $Tr_{\mathbb{C}/\mathbb{R}}(z)$ and $N_{\mathbb{C}/\mathbb{R}}(z)$.
- 12. Set $F = \mathbb{Q}\left(\sqrt{1+\sqrt{7}}\right)$. Show that F is not Galois over \mathbb{Q} . Find explicitly the Galois closure K of F over \mathbb{Q} and determine $Gal\left(K:\mathbb{Q}\right)$.
- 13. Determine the Galois group over \mathbb{Q} of $f(x) = x^4 + 5x + 5$.
- 14. If $f(x) = x^5 + 3x^3 3x^2 9 \in \mathbb{Q}[x]$, find a splitting field $K \subseteq \mathbb{C}$ and determine its Galois group.

- 15. Suppose that $f(x) \in \mathbb{Q}[x]$, $g(x) = f(x^2)$, $K \subset \mathbb{C}$ is a splitting field for g(x) and $[K : \mathbb{Q}]$ is odd. Show that f(x) and g(x) have the same Galois group.
- 16. Let $K = \mathbb{F}_{81}$, the field with 81 elements with prime field \mathbb{F}_3 . Determine with reasons the cardinalities of the following two subsets of K.
 - (a) $S = \{a \in K : F(a) = L\}$, generators for K as a field extension of F.
 - (b) $T=\{a\in K: (a)=K^*=K\backslash\{0\}\}$, generators for the (multiplicative) group K^* .
- 17. Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible of degree 4. Show that the Galois group of f(x) cannot be the quaternion group Q of order 8.

1.2 Modules:

1. If F is a field, let R be the ring

$$R = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in F \right\}.$$

Define R-modules

$$M = \left\{ \left[\begin{array}{c} a \\ 0 \end{array} \right] : a \in F \right\} \text{ and } N = \left\{ \left[\begin{array}{c} 0 \\ b \end{array} \right] : b \in F \right\}.$$

Show that M and N are not isomorphic as R-modules.

- 2. True or false:
 - (a) If M and N are free modules, then so is $M \oplus N$.
 - (b) $\mathbb{Q} \oplus \mathbb{Q}$ is a finitely generated \mathbb{Z} -module.
 - (c) $\mathbb{R} \oplus \mathbb{R}$ is a finitely generated \mathbb{Q} -module.
 - (d) $\mathbb{C} \oplus \mathbb{C}$ is a finitely generated \mathbb{R} -module.
- 3. Prove or give a counterexample: If R is an integral domain, then $Tor(M) = \{m \in M : \exists r \neq 0 \in R, rm = 0\}$ is a submodule of M.
- 4. Let M, N be simple R-modules. Prove that any module homomorphism $f: M \to N$ is either an isomorphism or the zero map.
- 5. If M is a cyclic unitary R-module show that M is R-isomorphic with R/I for some left ideal of R.
- 6. Suppose that R is a ring with 1, L is a unitary (left) R-module, M and N are submodules of L, and both M+N and $M\cap N$ are finitely generated. Show that M and N are finitely generated.
- 7. Let T be the $\mathbb{Z}[i]$ module homomorphism from $\mathbb{Z}[i]^2$ to $\mathbb{Z}[i]^2$ defined by the matrix $\begin{pmatrix} 2i & 4i+2\\ 2i-2 & i \end{pmatrix}$. Determine whether T is one-to-one and whether T is onto.

- 8. Let R be a PID, let M be a free R-module of finite rank and let f be an R-endomorphism of M. Show that f is injective if and only if $M/\operatorname{Im}(f)$ is an R-torsion submodule.
- 9. Let *R* be a nonzero commutative ring with 1. Show that if every submodule of a free *R*-module is free, then *R* is a PID.
- 10. True or false
 - (a) Let R be an ID with 1. Then finitely generated torsion-free R-modules are free
 - (b) Let R be a PID. Then torsion-free R-modules are free.
 - (c) Let R be an ID with 1. Let F be the field of fractions of R, with V a vector space over F. We may consider V to be an R-module, since R is a subring of F. Then vectors $v_1, ..., v_n \in V$ are linearly independent if and only if they are linearly dependent over R.
 - (d) Let R be a commutative ring with an identity element and let M be an R-module. Then M is a finite set if and only if it is finitely generated and every element of M is a torsion element.
- 11. Let R be a ring and suppose that M_1, M_2 , and M_3 are three left R-modules. Let $f: M_1 \to M_2$ be a homomorphism.
 - (a) Show that f induces a homomorphism $g: \operatorname{Hom}_R(M_2, M_3) \to \operatorname{Hom}_R(M_1, M_3)$
 - (b) Show that if f is surjective, then g is injective.
 - (c) If f is injective, is g surjective? Give a proof or counterexample.
- 12. Let M be the \mathbb{Z} -module $\mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z})$. Give a precise and explicit description of $\operatorname{End}_{\mathbb{Z}}(M)$.
- 13. Let $T: V \to V$ is a linear transformation and regard V as a $\mathbb{C}[x]$ -module via T (that is define x(v) = T(v)). Suppose that the minimal polynomial of T has degree equal to the dimension of V. Show that V is a cyclic $\mathbb{C}[x]$ -module.
- 14. Let $f: \mathbb{Z}^2 \longrightarrow \mathbb{Z}/3\mathbb{Z}$ be the homomorphism $f(x,y) = x + y \pmod{3}$.
 - (a) Find a \mathbb{Z} -module basis for $K = \ker(f)$.
 - (b) Does there exist a \mathbb{Z} -module homomorphism $g: \mathbb{Z}^2 \to K$ such that the composition $K \to \mathbb{Z}^2 \to K$ of g with the inclusion map is the identity? Why or why not?