
Math 511B - Final Practice
Selected Solutions

(3) Suppose f (x) was reducible. Then as f is of degree m; we know that m
must divide the degree of the extension. However, as (m;n) = 1 we know that
m - n as so f must still be irreducible.

(5) (a) Compute the Smith Normal form for L:
(b) Express Zn= ImL as a direct sum of cyclic groups.

(a) L!

0BBBBB@
�1 0 0 � � � 0
0 n 0 � � � 0
0 0 n � � � 0

0 0 0
. . . 0

0 0 0 � � � n2 � n2 = 0

1CCCCCA (b) (Z=nZ)n�2 � Z

(7)

0@ 2 4 �6
4 4 8
�6 �8 14

1A �!

0@2 0 0
0 �4 20
0 4 �4

1A �!

0@2 �4 0
0 16

1A and so we

have Z=2Z� Z=4Z� Z=16Z:
(8) (a) Sure, this extension is well known to be Galois. If E and F are the

splitting �elds of families of separable polynomials, then EF is the splitting �eld
of the big family gotten by throwing together the polynomials that give E and
F:

1. (a) Solution 1 (b) The intersection is again Galois over k: One way
to see this is to say that E \ F is a sub�eld of E and is therefore
separable over k: The issue is whether or not it is normal. Any
� : E \ F ! �k that is the identity on k can be extended to a map
E ! �k and therefore takes values in E (because E is normal over k):
Symmetrically, it takes values in F: Therefore, the image lies in E\F:
An alternate argument is to exploit the corollary that if the subgroups
of Gal (L=k) that correspond to E and F are H and H 0, then the
subgroup corresponding to the intersection is the group generated by
H and H 0: If H and H 0 are both normal subgroups of Gal (L=k) ; so
is the group that they generate together.

(9) If f is reducible, say f = gh in k [x] ; then the action of Gal (K=k) on
the roots of f sends roots of g to roots of g and roots of h to roots of h: Thus
the action is not transitive: you can�t �nd an element of Gal (K=k) that sends
an arbitrary �i to an arbitrary �j : Suppose that f is irreducible and take two

roots �i and �j of f: As we know, there are isomorphisms k [x] = (f (x))
~! k (�i)

and k [x] = (f (x)) ~! k (�j) that map x to �i and �j ; respectively. Taking the
composite of one map and the inverse of the other, we obtain � : k (�i)! k (�j)
that sends �i to �j and is the identity on k: View � as an embedding k (�i)! K
and extend it to an automorphism of K: The resulting element of Gal (K=k)
sends �i to �j :
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(10) Q(�) is a Galois extension of Q whose degree is p� 1: The galois group
of the extension is canonically (Z=pZ)� ; a cyclic group of order p�1: In the dic-
tionary between elements of (Z=pZ)� and automorphisms of Q (�) ; the number i
mod p corresponds to the automorphism that sends � to �i: Since Q (�) � Q (�) ;
Q (�) is a cyclic extension of Q of degree dividing p� 1: The degree is the num-
ber of distinct conjugates alphai := �i + ��i of � = � + ��1: Let us calculate
the number of disctinct �i: Certainly �i depends only on the image of i in
(Z=pZ)� n f�1g ; i.e., �i = ��i: Conversely, suppose �i = �j ; which is to say
�i + ��i = �j + ��j : We can suppose that we have 1 � i; j � p � 1 for de�ni-
tiveness. An important fact here is that the numbers �; �2; :::; �p�1 are linearlly
independent of Q. Indeed, a linear dependence amoung them would yield on
division by � a linear dependence among 1; �; :::; �p�2; which would contradict
the fact that � has degree p� 1 over Q. The important fact implies that i = �j
which is enough to show that there are (p� 1) =2 di¤erent �i: Hence Q (�) has
degree (p� 1) =2 over Q.
(19) Write down all abelian groups of order 1500 using both elementary

divisors and invariant factors.
Solution: 1500 = 22 � 3 � 53; and so there will be a total of six of each:
Elementary Divisors: Z4 � Z3 � Z53 ; Z4 � Z3 � Z52 � Z5; Z4 � Z3 � (Z5)3 ;

(Z2)
2 � Z3 � Z53 ; (Z2)2 � Z3 � Z52 � Z5; (Z2)2 � Z3 � Z5 � Z5 � Z5
Invariant Factors: Z1500; Z300 � Z5; Z60 � Z5 � Z5; Z750 � Z2; Z150 � Z10;

Z30 � Z10 � Z5
(20) Assume that g is the generator of G: De�ne a map Z [x] ! ZG by

f (x)! f (g) : This is a "substitution" homomorphism which has been seen be-
fore as a ring homomorphism. It is surjective by the de�nition of the group
algebra as the set of all linear integral combinations of the elements of G;
which in this case consists of the powers of g: Now the kernel of this homo-
morphism contains xn�1 since gn = 1: We thus obtain a ring homomorphism
Z [x] = (xn � 1) ! ZG. We now see that this map is 1 � 1 since every element
of Z [x] = (xn � 1) is uniquely represented as a polynomial of degree less than or
equal to n� 1 mod xn � 1 and every element of ZG is uniquely represented as
a linear combination of 1; g; :::; gn�1:
(21) We de�ne a bilinear map I � I ! R by (a; b)! ab: As usual multipli-

cation gives a bilinear map. This induces a homomorphism I
RI ! R given
by a
b ! ab and so in general

Pn
i=1 ai
bi !

Pn
i=1 aibi: Since

Pn
i=1 aibi 6= 0

implies the element mapping into it cannot be zero we see
Pn

i=1 ai
bi 6= 0; the
contrapositive of what was asked.
(22) (a) Consider the projection M ! M=N is clearly surjective. So any

chain of submodules in M=N comes from a chain of submodules of M: As M is
Noetherian, M=N is also noetherian.
(b) Assume that S is a �nitely generated Z-module. Then every submodule

is �nitely generated and so each ideal is �nitely generated as we can always
view and ideal as a submodule. Let I1 � I2 � � � � be a chain of ideals and let
I = [Ii: Note that I is an ideal. But I is �nitely generated as a modue by say
a1; :::; an: Since ai 2 N for all i; each ai lies in one of the ideals in the chain, say
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Iji : Let m = max fj1; :::; jng : Then ai 2 Im for all i so the ideal they generate
is contained in Im; i.e. I � Im: This implies Im = I = Ik for all k � m which
proves noetherian.
(c)Take Q as a Z-module.
(24) (a) Let N = Z and take the abelian groups A = Z; B = Z; and C = Z4:

Then the sequence

0 �! A
�4=f�! B

�4=g�! C �! 0
is clearly exact. Now we consider the sequence

0 �! Hom(Z4;Z) �! Hom(Z;Z) �4�! Hom(Z;Z) �! 0
which is isomorphic to

0! 0! Zh=�4! Z!0
but we then have Z= Im (h) �= Z4 and thus is not exact as ker 6= im there.
(b) If we take N to be an injective Z-module or if you just want to think

of it as a group then it will work for any divisible abelian group. To make
the sequence exact we are asking that just like in the Tor computation that
Tor1 = 0 we are now taking homs instead of tensor products and making the
same construction. Just as �nding Tor (P;M) for a projective (in this case free)
=0 for all n � 1 as a resolution for P is 0! P ! P ! 0: A proposition (which
is not too hard to prove) in Dummitt and Foote (section 17.1 proposition 9)
states that for an R-module Q (or in our case an abelian group) the following
are equivalent:
(1) Q is injective (or just a divisible abelian group)
(2) Ext1R (A;Q) = 0 for all R-modules A
(29) If f : A ! A is an R-module homomorphism such that ff = f; then

A = ker f � Im f:

1. Solution 2 I claim that ker f = Im (Id� f) where Id�f : A! A: " � "
Let a 2 ker f: Then f (a) = 0; so a � f (a) = a: So a = (Id� f) (a) ; i.e.
a 2 Im (Id� f) :
" � " Let a 2 Im (Id� f) : Then a = (Id� f) (b) for some b 2 B: Then
f (a) = f (Id� f) (b) = f (b� f (b)) =
f (b)� f (f (b)) = f (b)� f (b) = 0

(31) Describe all semisimple rings of order 144:

1. Solution 3 As any �nite ring is Artinian. Therefore our structure theo-
rem says that R �= I1 � � � � � In; i.e. R is isomorphic to the direct sum of
�nitely many ideals, each Ii being represented by and nj�nj matrix over a
skew �eld. However a theorem of Weddeburn says all �nite division rings
must be �elds. 144 = 2432: So M �= M2 (F2) � F9; M2 (F2) � F3 � F3;
F16 � F19; ::: there are 12 total, 10 are commutative and 2 are not.

(32) Determine the abelian group G = (a; b : 30a = 42b = 70 (a+ b) = 0) as
a direct sum of cyclic groups.
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0@30 0
0 42
70 70

1A!

0@2 0
0 210
0 0

1A and so we get G �= Z2 � Z210:

(33) If D is a division ring show that all elements, with one exception are
quasi-regular. What is the exception?
First note that �1 is the element of r that is not q.r. as �1 � r = �1 +

r + (�1) r = �1 6= 0: Now take b 6= �1 which implies b+ 1 6= 0: So there is an
a 2 R such that a (b+ 1) = 1 implies ab+ a = 1 implies a� 1 + ab = 0 implies
a � 1 + b + (a� 1) b = 0 implies (a� 1) � b = 0 and thus b is l.q.r. and by a
similar argument we can show it is r.q.r. and thus is q.r.
(34) Determine the Galois group over Q of f (x) = x3 � 3x+ 1:
First note that f (x) is irreducible by noting no roots over Q as no roots over

Z, or reduce mod2; or �nd f (x+ 1) and use Eisenstein. We now can compute
the determinant and get �4p3 � 27q2 = 108 � 27 = 81; a perfect square. As
f (x) is irreducible over Q, we get A3:
(35) If R = 2Z, the ring of even integers, show that the ideal I = (6) is

modular but the ideal J = (4) is not modular.
Modular means there is an e 2 R such that for all r 2 R; r � re 2 I:

Take e = 4 2 R: All even integers can be written as 2x: So r � r � 4 = 2x �
2x (4) = �6x 2 (6) : All elements of (4) can be written as 4y with y 2 Z.
2x � 2x (e) = 2x (1� e) : So assume 2x (1� e) = 4y: As Z is an ID we have
x (1� e) = 2y: As x can be odd, e must be odd and this is a contradiction as
e 2 2Z.
(36) True or false
(a) A simple Artinian ring is left noetherian.
(b) The radical of a ring is a radical ring.
Solution: (a) True (b) True
(37) (First I guess I should have said that R is also a �nitely generated group.

If A is a �nitely generated Z-module then we have that
A �= Zn �

L
i Z= (ni)Z and R �= Zm �

L
j Z= (mj)Z and so we get

Zmn �
L

i (Z= (ni)Z)
m �

L
j (Z= (mj)Z)n �

L
i;j Zgcd(ni;mj)

(38) Describe all semisimple rings having 10,000 elements.
10; 000 = 2454 and so some possibilities are by the usual theorems

1. Solution 4 M2 (F2)�M2 (F5) ; M2 (F2)� Z54 ; ... , Z42 � Z45:
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