Math 511B - Final Practice

Selected Solutions

(3) Suppose f (z) was reducible. Then as f is of degree m, we know that m
must divide the degree of the extension. However, as (m,n) = 1 we know that
m{n as so f must still be irreducible.

(5) (a) Compute the Smith Normal form for L.
(b) Express Z"/Im L as a direct sum of cyclic groups.

-1 0 O --- 0
0 n 0 0
a)L— |0 0 n 0 (b) (Z/nZ2)" a7
0 00 " 0
0 0 0 -+ n2—n2=0
2 4 —6 2 0 0 2
M4 4 8| — [0 -4 20| — —4 0 | and so we
-6 -8 14 0 4 —4 0 16

have Z/2Z & Z./AZ @ Z/16Z.
(8) (a) Sure, this extension is well known to be Galois. If E and F are the
splitting fields of families of separable polynomials, then EF is the splitting field

of the big family gotten by throwing together the polynomials that give E and
F.

1. (a) Solution 1 (b) The intersection is again Galois over k. One way
to see this is to say that E N F is a subfield of E and is therefore
separable over k. The issue is whether or not it is normal. Any
o: ENF — k that is the identity on k can be extended to a map
E — k and therefore takes values in E (because E is normal over k).
Symmetrically, it takes values in F. Therefore, the image lies in ENF.
An alternate argument is to exploit the corollary that if the subgroups
of Gal(L/k) that correspond to E and F are H and H’, then the
subgroup corresponding to the intersection is the group generated by
H and H'. If H and H' are both normal subgroups of Gal (L/k), so
18 the group that they generate together.

(9) If f is reducible, say f = gh in k[z], then the action of Gal (K/k) on
the roots of f sends roots of g to roots of g and roots of h to roots of h. Thus
the action is not transitive: you can’t find an element of Gal (K /k) that sends
an arbitrary a; to an arbitrary o;. Suppose that f is irreducible and take two

roots c; and o of f. As we know, there are isomorphisms & [z] / (f (z)) —k (av)

and k[z] / (f (x)) — k(a;) that map x to «; and «, respectively. Taking the
composite of one map and the inverse of the other, we obtain o : k (a;) — k (cj)
that sends a; to a; and is the identity on k. View o as an embedding & (a;) — K
and extend it to an automorphism of K. The resulting element of Gal (K/k)
sends o; to ay.



(10) Q(¢) is a Galois extension of Q whose degree is p — 1. The galois group
of the extension is canonically (Z/pZ)* , a cyclic group of order p— 1. In the dic-
tionary between elements of (Z/pZ)" and automorphisms of Q (¢) , the number i
mod p corresponds to the automorphism that sends ¢ to ¢*. Since Q (o) € Q (¢),
Q () is a cyclic extension of Q of degree dividing p — 1. The degree is the num-
ber of distinet conjugates alpha; = ¢* + (7% of &« = ¢ + ¢~'. Let us calculate
the number of disctinct «;. Certainly «; depends only on the image of i in
(Z/pZ)*\{:I:I}, i.e., a; = a_;. Conversely, suppose a; = a;, which is to say
"+ ¢ = ¢ + 7. We can suppose that we have 1 < 4,5 < p — 1 for defini-
tiveness. An important fact here is that the numbers ¢, 2, ..., (P! are linearlly
independent of Q. Indeed, a linear dependence amoung them would yield on
division by ¢ a linear dependence among 1,¢, ..., (P~ 2, which would contradict
the fact that ¢ has degree p — 1 over Q. The important fact implies that i = +5
which is enough to show that there are (p — 1) /2 different «;. Hence Q () has
degree (p — 1) /2 over Q.

(19) Write down all abelian groups of order 1500 using both elementary
divisors and invariant factors.

Solution: 1500 = 22 - 3 - 53, and so there will be a total of six of each:

Elementary Divisors: Zy ® Z3 @ Zss, Zy B Z3 D Zsz B Zy, Ly D Z3 D (Z5)3 ,
(Z2)? ® 23 @ Zss, (Z2)> & 23 & Tz & s, (Z2)2 @ Zs @ Zs & Zs & Zs

Invariant Factors: Zis500, Z300 D Z5, Zeo ® Zs B Zs, Zrso D Za, Zis0 D Z1o,
Z30 D Z10 ® Zs

(20) Assume that g is the generator of G. Define a map Z[z] — ZG by
f(z) — f(g). This is a "substitution" homomorphism which has been seen be-
fore as a ring homomorphism. It is surjective by the definition of the group
algebra as the set of all linear integral combinations of the elements of G,
which in this case consists of the powers of g. Now the kernel of this homo-
morphism contains 2"~ ! since g" = 1. We thus obtain a ring homomorphism
Z[z]/(z™ — 1) — ZG. We now see that this map is 1 — 1 since every element
of Z [z] / (™ — 1) is uniquely represented as a polynomial of degree less than or
equal to n — 1 mod z™ — 1 and every element of ZG is uniquely represented as
a linear combination of 1,g,...,¢g" .

(21) We define a bilinear map I x I — R by (a,b) — ab. As usual multipli-
cation gives a bilinear map. This induces a homomorphism I®rl — R given
by a®b — ab and so in general Y | a;®b; — > =, a;b;. Since > ab; # 0
implies the element mapping into it cannot be zero we see > ; a;®b; # 0, the
contrapositive of what was asked.

(22) (a) Consider the projection M — M/N is clearly surjective. So any
chain of submodules in M /N comes from a chain of submodules of M. As M is
Noetherian, M /N is also noetherian.

(b) Assume that S is a finitely generated Z-module. Then every submodule
is finitely generated and so each ideal is finitely generated as we can always
view and ideal as a submodule. Let I; C Iy C --- be a chain of ideals and let
I = UI;. Note that [ is an ideal. But [ is finitely generated as a modue by say
a1, ..., an. Since a; € N for all ¢, each a; lies in one of the ideals in the chain, say



I;,. Let m = max{ji,...,jn} . Then a; € I,,, for all ¢ so the ideal they generate
is contained in I,,, i.e. I C I,,. This implies I,, = I = I} for all kK > m which
proves noetherian.

(c)Take Q as a Z-module.

(24) (a) Let N = Z and take the abelian groups A =Z, B = Z, and C = Z,4.
Then the sequence

00— Ao L
is clearly exact. Now we consider the sequence
0 — Hom (Z4, Z) — Hom (Z,Z) % Hom (Z,Z) — 0
which is isomorphic to
0—0—2"S"Z -0
but we then have Z/Im (h) = Z4 and thus is not exact as ker # im there.

(b) If we take N to be an injective Z-module or if you just want to think
of it as a group then it will work for any divisible abelian group. To make
the sequence exact we are asking that just like in the Tor computation that
Tor; = 0 we are now taking homs instead of tensor products and making the
same construction. Just as finding Tor (P, M) for a projective (in this case free)
=0 for all n > 1 as a resolution for P is 0 — P — P — 0. A proposition (which
is not too hard to prove) in Dummitt and Foote (section 17.1 proposition 9)
states that for an R-module @ (or in our case an abelian group) the following
are equivalent:

(1) @ is injective (or just a divisible abelian group)

(2) Exth (A, Q) = 0 for all R-modules A

(29) If f : A — A is an R-module homomorphism such that ff = f, then
A=ker f@Imf.

1. Solution 2 I claim thatker f =TIm (Id — f) where [d—f: A— A.”7 C”
Let a € ker f. Then f(a) =0, so a— f(a) =a. Soa= (Id— f)(a), ie.
a€lm(Ild-f).

" D7 Leta € Im(Id— f). Then a = (Id — f)(b) for some b € B. Then
fla)=fTd=f) ()= f(b—f(b)=
F )= f(f () =f(b)=f(b)=0

(31) Describe all semisimple rings of order 144.

1. Solution 3 As any finite ring is Artinian. Therefore our structure theo-
rem says that R= I, & ---® I, i.e. R is isomorphic to the direct sum of
finitely many ideals, each I; being represented by and n; x n; matriz over a
skew field. However a theorem of Weddeburn says all finite division rings
must be fields. 144 = 243%. So M = My (Fy) @ Fy, My (Fy) @ F3 @ Fy,
Fig @ g, ... there are 12 total, 10 are commutative and 2 are not.

(32) Determine the abelian group G = (a,b : 30a = 42b =70 (a + b) = 0) as
a direct sum of cyclic groups.



30 0 2 0
0 42 — [0 210 | and so we get G = Zs ® Z210-
70 70 0 0

(33) If D is a division ring show that all elements, with one exception are
quasi-regular. What is the exception?

First note that —1 is the element of r that is not q.r. as —1xr = —1 +
r+ (=1)r = —1 # 0. Now take b # —1 which implies b+ 1 # 0. So there is an
a € R such that a (b+ 1) = 1 implies ab + a = 1 implies a — 1 + ab = 0 implies
a—14+b+(a—1)b =0 implies (a — 1) *b = 0 and thus b is l.q.r. and by a
similar argument we can show it is r.q.r. and thus is q.r.

(34) Determine the Galois group over Q of f (z) = 2® — 3z + 1.

First note that f (x) is irreducible by noting no roots over Q as no roots over
Z, or reduce mod 2, or find f (x + 1) and use Eisenstein. We now can compute
the determinant and get —4p3 — 27¢® = 108 — 27 = 81, a perfect square. As
f (z) is irreducible over Q, we get As.

(35) If R = 2Z, the ring of even integers, show that the ideal I = (6) is
modular but the ideal J = (4) is not modular.

Modular means there is an e € R such that for all r € R, r —re € 1.
Take e = 4 € R. All even integers can be written as 2x. Sor —r -4 = 2z —
2z (4) = —6z € (6). All elements of (4) can be written as 4y with y € Z.
2z — 2z (e) = 2z (1 —e). So assume 2z (1 —e) = 4y. As Z is an ID we have
z (1 —e) = 2y. As = can be odd, e must be odd and this is a contradiction as
e € 27.

(36) True or false

(a) A simple Artinian ring is left noetherian.

(b) The radical of a ring is a radical ring.

Solution: (a) True (b) True

(37) (First I guess I should have said that R is also a finitely generated group.
If A is a finitely generated Z-module then we have that

A=Z"o@®,Z/ (ni)Z and R=Z™ & P, Z/ (m;) Z and so we get
zm @ @ (Z/ (n) 2)" & @, (2] (m;) 2)" © B ; Zgea(nim,)

(38) Describe all semisimple rings having 10,000 elements.

10,000 = 2%5% and so some possibilities are by the usual theorems

1. Solution 4 M2 (]FQ) X M2 (]Fs), Mg (Fg) X Z54, ey, Zg X Zg



