Math 511B - Final Exam Practice

- 1. Let R be a PID and $A \in \mathbb{R}^{n \times n}$ representing a map $\mathbb{R}^n \stackrel{A}{\to} \mathbb{R}^n$.
 - (a) Show that $\operatorname{coker}(A) = 0$ if and only if $\det(A) \in R^{\times}$ and $\operatorname{coker}(A)$ is a torsion R-module if and only if $\det(A) \in R \{0\}$. ($\operatorname{coker}(A) = R^n/\operatorname{Im}(A)$), i.e. it measures how close to surjective A is just as kernel measure how close to injective a map is)
 - (b) Assume $\det(A) \in R \{0\}$. Let J be the principal ideal $(\det(A))$ in R, and $I := \operatorname{Ann}_R(\operatorname{coker}(A))$. Show that there exists a positive integer N for which

$$I^N\subset J\subset I.$$

- (c) Assume $R = \mathbb{F}[x]$ for some field \mathbb{F} and that $\det(A) \neq 0$. Show that $\dim_{\mathbf{F}} \operatorname{coker}(A)$ is the degree (in x) of the polynomial $\det(A)$.
- 2. Let R be a PID and let $A \in R^{m \times n}$, $B \in R^{l \times m}$ represent maps of free R-modules as shown, with BA = 0 and $m \ge l, n$:

$$R^n \xrightarrow{A} R^m \xrightarrow{B} R^l$$

Let A,B be equivalent by left and right multiplication by invertible matrices over R to diagonal matrices

$$A^{\sim} \left[egin{array}{c} D \ 0 \end{array}
ight], \, B^{\sim} \left[E \,\, 0
ight]$$

where $D \in \mathbb{R}^{n \times n}$ is diagonal with diagonal entries $(d_1, ..., d_n)$ and $E \in \mathbb{R}^{l \times l}$ is diagonal with diagonal entries $(e_1, ..., e_l)$. Express the quotient R-module $H := \ker B / \operatorname{Im} A$ as a direct sum of cyclic R-modules in terms of the data given by the d_i , e'_is .

- 3. Let \mathbb{F} be a field and \mathbb{K} a field extension of \mathbb{F} with $[\mathbb{K} : \mathbb{F}] = n < \infty$. Let f(x) be irreducible of degree m and $\gcd(m,n) = 1$. Show that f(x) remains irreducible in $\mathbb{K}[x]$.
- 4. Let \mathbb{F} be a field and \mathbb{K} a field extension of \mathbb{F} with $[\mathbb{K} : \mathbb{F}] = n < \infty$. LEt k be an integer $0 \le k \le n$, and conside the set

$$\mathbb{G}_{\mathbb{F}}(k,\mathbb{K}) := \{k \text{-dimensional } \mathbb{F} \text{-linear subspaces of } \mathbb{K}\}$$

- (a) Show that the groups of units \mathbb{K}^{\times} acts on the set $\mathbb{G}(k,\mathbb{K})$ in the following way: if V is an \mathbb{F} -linear subspace of \mathbb{K} and $\alpha \in \mathbb{K}^{\times}$ then explain why $\alpha V := \{\alpha v : v \in V\}$ is another \mathbb{F} -linear subspace of the same dimension. Also explain exactly how this induces an action of the quotient group $\mathbb{K}^{\times}/\mathbb{F}^{\times}$ on $\mathbb{G}(k,\mathbb{K})$.
- (b) Show that if $\gcd(k, n) = 1$, the action of K^{\times}/F^{\times} on G(k, K) is free, i.e. for every non-identity element $\bar{\alpha}$ of the group K^{\times}/F^{\times} there are no k-dimensional F-subspaces $\bar{\alpha}V = V$.

5. Let L be the following matrix in $\mathbb{Z}^{n\times n}$: $(n\in\mathbb{Z})$

$$L = \begin{bmatrix} n-1 & -1 & -1 & \cdots & -1 \\ -1 & n-1 & -1 & \cdots & -1 \\ -1 & -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & n-1 \end{bmatrix}.$$

- (a) Compute the Smith Normal form for L.
- (b) Express $\mathbb{Z}^n/\operatorname{Im} L$ as a direct sum of cyclic groups.
- 6. For the matrix A shown below, find the rational canonical form and the Jordan canonical form in $\mathbb{Q}^{4\times 4}$.

$$\begin{bmatrix} 1 & 4 & -4 & 0 \\ -1 & -3 & 2 & 2 \\ 0 & -2 & 1 & 2 \\ -1 & -4 & 2 & 3 \end{bmatrix}.$$

7. Let $G = \mathbb{Z}^3 / (\mathbb{Z}v_1 + \mathbb{Z}v_2 + \mathbb{Z}v_3)$ where $v_1, v_2,$ and v_3 are given by

$$v_1 = \begin{bmatrix} 2\\4\\-6 \end{bmatrix}, v_2 = \begin{bmatrix} 4\\4\\8 \end{bmatrix}, v_3 = \begin{bmatrix} -6\\-8\\14 \end{bmatrix}.$$

Express G explicitly as a direct sum of cyclic groups.

- 8. Suppose that E and F are finite Galois extensions of a field k, with E and F both contained in a common extension L of k. Which of the following extensions of k are necessarily Galois extensions of k (sketch a proof or provide a counterexample):
 - (a) The compositum EF of E and F (I think we used $E \vee F$)
 - (b) $E \cap F$
- 9. Solution 1 Suppose that K/k is a finite Galois extension and that $\alpha_1, ..., \alpha_n$ are distinct elements of K. Assume further that the polynomial $f(x) = (x \alpha_1) \cdots (x \alpha_n)$ has coefficients in k. Show that f(x) is irreducible of k if and only if the natural operation of Gal(K/k) on $\{\alpha_1, ..., \alpha_n\}$ (by conjugation) is transitive.
- 10. Let p be a prime number $\neq 2$, and let ζ be a complex pth root of 1 ($\zeta \neq 1$). Set $\alpha = \zeta + \zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and determine the degree $[\mathbb{Q}(\alpha):\mathbb{Q}]$.
- 11. Let A be a PID. For which $a \in A$ is the A-module A/aA semisimple?

2

12. Prove that the Jacobson radical of a semisimple ring is 0.

- 13. (a) Show that the center of a semisimple ring contains no non-zero nilpotent element. (b) Let R = kG where G is a finite group and k is a field. Assume that the characteristic of k is a prime number p and the p divide the order of G. Prove that R is *not* semisimple. (It may help to consider $\sum_{g \in G} g \in R$).
- 14. Let V and W be finite dimensional k-vector spaces. Let $V^* = \operatorname{Hom}(V,k)$ be the linear dual of V. Given $(\phi,w) \in V^* \times W$, we define a linear map $V \to W$ by $v \to \phi(v) \cdot w$. Show that this association defines a bilinear map $V^* \times W \to \operatorname{Hom}(V,W)$, and that the induced homomorphism $V^* \otimes W \to \operatorname{Hom}(V,W)$ is an isomorphism of k-vector spaces.
- 15. Let L/K be a finite Galois extension, and let $G = \operatorname{Gal}(L/K)$. Let W be a finite dimensional vector space over K, and let $V = W \otimes_K L$ be the associated L-vector space. Note that the map $w \to w \otimes \to i$ dentifies W with a subset of V. For each $g \in G$, show that there is a bijection $\lambda_g : V \to V$ which satisfies $\lambda_g (w \otimes a) = w \otimes ga$ and which is such that $\lambda_g (cv) = g(c) \lambda_g (v)$ for $v \in V$ and $c \in L$. (We say that λ_g is "g-linear.") Prove that

$$W = \{ v \in V | \lambda_g(v) = v \text{ for all } g \in G \}$$
 (1)

- 16. Let K be a finite extension of \mathbb{Q} for which $[K:\mathbb{Q}]$ is odd. Show that among the field embeddings $\sigma:K\to\mathbb{C}$, there is at least one which maps K into \mathbb{R} . If K/\mathbb{Q} is an odd degree Galois extension, show that all σ map K into \mathbb{R} .
- 17. In the tensor product $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$, prove that $1 \otimes i + i \otimes 1$ is not of the form $x \otimes y$.
- 18. Let

$$0 \to A \to B \to C \to 0 \ (*)$$

be an exact sequence of R-modules, and let M be an R-module.

- (a) Show by example that the induced sequence $0 \to A \otimes_R M \to B \otimes_R M \to C \otimes_R M \to 0 \ (**)$ need not be exact.
- (b) Show that (**) is exact if (*) is split.
- (c) Show that (**) is exact if M is projective.
- (d) Show that (**) is exact if $R = \mathbb{Z}$ and $M = \mathbb{Q}$.
- 19. Write down all abelian groups of order 1500 using both elementary divisors and invariant factors.
- 20. Let G be a finite cyclic group of order n. Let $\mathbb{Z}G$ denote the integral group ring of G. Show that as rings $\mathbb{Z}G \cong \mathbb{Z}[x]/(x^n-1)\mathbb{Z}[x]$. (You may assume that every element of $\mathbb{Z}[x]/(x^n-1)\mathbb{Z}[x]$ is uniquely represented as a polynomial of degree less than or equal to $n-1 \mod x^n-1$.)

- 21. Let R be a commutative ring and let $I \subseteq R$ be an ideal. Considering I as an R-module, show that if $\sum_{i=1}^{n} a_i \otimes b_i = 0$ in $I \otimes_R I$ we have $\sum_{i=1}^{n} a_i b_i = 0$ (find a bilinear map $I \times I \to R$ and use it to get the result).
- 22. (a) Let R be a commutative ring. Let M be a noetherian R-module and let N be a submodule of M. Show that M/N is noetherian.
 - (b) Suppose that a commutative ring S, when regarded as an additive abelian group, is a finitely generated \mathbb{Z} -module. Show that S is a noetherian ring.
 - (c) Give an example of a noetherian ring that is not finitely generated as a \mathbb{Z} -module.
- 23. (a) Let L/K be a finite separable extension of fields. Show that there exists a finite Galois extension F/K with $L \subseteq F$.
 - (b) Let K be a characteristic p, where p is a prime. Let $n \geq 1$. Determine all diagonalizable matrices $M \in GL_n(K)$ such that $M^p = I$.
- 24. (a) Give an example of an exact sequence of abelian groups $0\to A\to B\to C\to 0$ and an abelian group N such that the sequence

$$0 \to \operatorname{Hom}\left(C,N\right) \to \operatorname{Hom}\left(B,N\right) \to \operatorname{Hom}\left(A,N\right) \to 0$$
 is not exact.

- (b) Find a nonzero abelian group N such that for every exact sequence $0 \to A \to B \to C \to 0$ of abelian groups, the sequence $0 \to \operatorname{Hom}(C,N) \to \operatorname{Hom}(B,N) \to \operatorname{Hom}(A,N) \to 0$
- is exact. Briefly explain why N has this property.
- 25. (a) Let M and N be free modules over an integral domain R. Let $m \in M$ and $n \in N$. Suppose $m \otimes n = 0$ in $M \otimes_R N$. Show that either m = 0 or n = 0
 - (b) Give an example of modules M,N over some ring R and elements $0 \neq m \in M$ and $0 \neq n \in N$ such that $m \otimes n = 0$ in $M \otimes_R N$.
- 26. (a) Determine the similarity class (i.e. the possible rational cannonical forms) for all 3×3 rational matrices $A \in M_3(\mathbb{Q})$ whose characteristic polynomial is $(t-1)^3$. What is the minimal polynomial of each similarity class.
 - (b) Find the Jordan form of the 20×20 matrix N which has (i) $N_{i,i} = 2$ for all i and (ii) zeros everywhere else except for the first row and 20^{th} column which is a 1.
- 27. Let R be a commutative ring with identity and suppose I is an ideal contained in every maximal ideal of R.
 - (a) Let $s \in I$, show 1 + a is a unit in R. (Hint: consider the ideal (1 + a).)

- (b) If M is an R-module, let $IM = \{\sum a_j m_j | a_j \in I, m_j \in M\}$. Show if M is finitely generated and M = IM, then M = 0. (hint: Consider a minimal set of generators of M.)
- 28. Suppose $0 \to K \xrightarrow{i} P \xrightarrow{\pi} M \to 0$ and $0 \to K' \xrightarrow{i'} P' \xrightarrow{\pi'} M \to 0$ are exact sequences of R-modules with P projective.
 - (a) Show that there exist maps $\alpha:K\to K'$ and $\beta:P\to P'$ such that the diagram

commutes.

(b) If $\theta: K \to P \oplus K'$ is defined by $\theta(x) = (ix, \alpha x)$ and $\psi: P \oplus K' \to P'$ is defined by $\psi(u, v) = \beta(u) - i'(v)$, then

$$0 \to K \xrightarrow{\theta} P \oplus K \xrightarrow{\psi} P' \to 0$$

is exact. Verify the exactness at $P \oplus K'$.

- (c) Conclude that if P' is also projective, then $K \oplus P' \cong P \oplus K'$.
- 29. If $f:A\to A$ is an R-module homomorphism such that ff=f, then $A=\ker f\oplus\operatorname{Im} f.$
- 30. R is a commutative ring. A is an R-module.
 - (a) If $f:A\to B$ is an R-homomorphism, then $f\left(Tor\left(A\right)\right)\subseteq Tor\left(B\right)$, where Tor is torsion submodule.
 - (b) If $0 \xrightarrow{f} A \xrightarrow{g} B \to C$ is an exact sequence of R-modules, then so is $0 \to Tor(A) \to Tor(B) \to Tor(C)$ by f_T and g_T respectively.
- 31. Describe all semisimple rings of order 144.
- 32. Determine the abelian group G = (a, b: 30a = 42b = 70 (a + b) = 0) as a direct sum of cyclic groups.
- 33. If D is a division ring show that all elements, with one exception are quasi-regular. What is the exception?
- 34. Determine the Galois group over \mathbb{Q} of $f(x) = x^3 3x + 1$.
- 35. If $R = 2\mathbb{Z}$, the ring of even integers, show that the ideal I = (6) is modular but the ideal J = (4) is not modular.
- 36. True or false
 - (a) A simple Artinian ring is left noetherian.
 - (b) The radical of a ring is a radical ring.

- 37. If A is a finitely generated \mathbb{Z} -module, describe $R \otimes_{\mathbb{Z}} A$ as completely as possible.
- 38. Describe all semisimple rings having 10,000 elements.
- 39. Let M be \mathbb{C}^3 with elements considered as column vectors. We make M into a $\mathbb{C}[x]$ module by having x act by left multiplication by the matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i \end{pmatrix}$$

and by having elements of $\mathbb C$ act by scalar multiplication. Find the rank and torsion of this module and give its decomposition as a direct sum of cyclic modules.

40. Determine all canonical forms and invariants of the following matrix over $\mathbb{F}_4 = \{0, 1, t, 1+t \mid 1+t+t^2=0\}.$

$$\begin{pmatrix} 1 & t & t+1 \\ t+1 & 1 & t \\ t & t+1 & 1 \end{pmatrix}$$