1 Math 511a - Test 1 Practice Questions

Groups

- 1. Determine all the homomorphisms from S_3 to A_4 .
- 2. Let G be a group of order pqr, where p,q,r are primes and p>q>r. Show that G is solvable.
- 3. Let G be the group of all $n \times n$ invertible matrices over \mathbb{R} , $n \geq 3$. Show that G is not solvable.
- 4. Find all the composition series of the group $\mathbb{Z}/42\mathbb{Z}$. Verify that they are equivalent.
- 5. Find a central series $G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n$ in D_4 such that $G_0 = \{1\}$ and $G_n = D_4$.
- 6. Give an example of a group G such that G is not nilpotent, but G contains a normal subgroup H such that H and G/H are nilpotent.
- 7. List all normal subgroups of $A_5 \times A_5$.
- 8. Suppose S is a set and the symmetric group S_4 acts transitively on S. Determine all possibilities for |S|.
- 9. Show that a group of order 48 must have a normal subgroup of order a power of 2.
- 10. Let G be the group of real 2×2 matrices of determinant 1, and let H be the subgroup of diagonal matrices.
 - (a) Find the normalizer of H in G, $N_G(H)$.
 - (b) Find the representatives for the cosets in $N_{G}(H)$.
- 11. Let p be a prime number. Let \mathbb{F}_p be the field of p elements. Let $G = GL_2(\mathbb{F}_p)$ be the 2×2 invertible matrices with entries in \mathbb{F}_p . Let G act on the vector space $V = \mathbb{F}_p \times \mathbb{F}_p$ in the usual way (by matrix multiplication).
 - (a) Show that G has exactly 2 orbits on V.
 - (b) Compute the order of the stabilizer of (1,0).
 - (c) Use part (b) to compute the order of G.
- 12. Either give an example of a finite group having its center of prime index or prove that such a group cannot exist.
- 13. Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if $K \triangleleft G$ and there is a Sylow p-subgroup P such that $K \cap P = 1$ and KP = G. Show that if G has a normal p-complement, then it is unique. Give an example.

- 14. Let H be the subgroup of S_7 , the symmetric group of 7 letters, generated by all 3-cycles. Is the permutation (1234) in H? Explain.
- 15. Give an example or prove that there does not exist a group of order 5! acting transitively on a set with 9 elements.
- 16. What are the conjugacy classes of S_3 ?
- 17. Suppose G is a group of order 45 with a normal subgroup P of order 3^2 . Show that G is abelian. (Hint: Aut (P) has order 6 or 24 according to whether P is cyclic or elementary abelian).
- 18. True or false: If G is a nonabelian group then it has abelian subgroups H_{α} such that $G = \bigcup_{\alpha} H_{\alpha}$ and $\bigcap_{\alpha} H_{\alpha} = 1$.
- 19. Show that the alternating group A_6 has no subgroup of order 72.