Final Exam Practice

Math 511a

1 Groups

- 1. Determine all the homomorphisms from S_3 to A_4 .
- 2. Let G be a group of order pqr, where p,q,r are primes and p>q>r. Show that G is solvable.
- 3. Let G be the group of all $n \times n$ invertible matrices over \mathbb{R} , $n \geq 3$. Show that G is not solvable.
- 4. Find all the composition series of the group $\mathbb{Z}/42\mathbb{Z}$. Verify that they are equivalent.
- 5. Find a central series $G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n$ in D_4 such that $G_0 = \{1\}$ and $G_n = D_4$.
- 6. Give an example of a group G such that G is not nilpotent, but G contains a normal subgroup H such that H and G/H are nilpotent.
- 7. List all normal subgroups of $A_5 \times A_5$.
- 8. Suppose S is a set and the symmetric group S_4 acts transitively on S. Determine all possibilities for |S|.
- 9. Show that a group of order 48 must have a normal subgroup of order a power of 2.
- 10. Let G be the group of real 2×2 matrices of determinant 1, and let H be the subgroup of diagonal matrices.
 - (a) Find the normalizer of H in G, $N_G(H)$.
 - (b) Find the representatives for the cosets in $N_G(H)$.
- 11. Let p be a prime number. Let \mathbb{F}_p be the field of p elements. Let $G = GL_2(\mathbb{F}_p)$ be the 2×2 invertible matrices with entries in \mathbb{F}_p . Let G act on the vector space $V = \mathbb{F}_p \times \mathbb{F}_p$ in the usual way (by matrix multiplication).
 - (a) Show that G has exactly 2 orbits on V.
 - (b) Compute the order of the stabilizer of (1,0).
 - (c) Use part (b) to compute the order of G.
- 12. Either give an example of a finite group having its center of prime index or prove that such a group cannot exist.

- 13. Suppose p is a prime and G is a finite group. A subgroup K of G is called a normal p-complement if $K \triangleleft G$ and there is a Sylow p-subgroup P such that $K \cap P = 1$ and KP = G. Show that if G has a normal p-complement, then it is unique. Give an example.
- 14. Let H be the subgroup of S_7 , the symmetric group of 7 letters, generated by all 3-cycles. Is the permutation (1234) in H? Explain.
- 15. Give an example or prove that there does not exist a group of order 5! acting transitively on a set with 9 elements.
- 16. What are the conjugacy classes of S_3 ?
- 17. Suppose G is a group of order 45 with a normal subgroup P of order 3^2 . Show that G is abelian. (Hint: Aut (P) has order 6 or 24 according to whether P is cyclic or elementary abelian).
- 18. True or false: If G is a nonabelian group then it has abelian subgroups H_{α} such that $G = \bigcup_{\alpha} H_{\alpha}$ and $\bigcap_{\alpha} H_{\alpha} = 1$.
- 19. Show that the alternating group A_6 has no subgroup of order 72.

2 Rings

- 1. Determine positive integers n such that \mathbb{Z}_n has no nonzero nilpotent elements.
- 2. Write the proof if the statement is true; otherwise give a counterexample
 - (a) In a ring R, if a and b are idempotent elements, then a+b is an idempotent element.
 - (b) In a ring R, if a and b are nilpotent elements, then a + b is nilpotent.
 - (c) Every finite ring with 1 is an integral domain.
 - (d) There exists a field with seven elements.
 - (e) The characteristic of an infinite ring is always 0.
 - (f) An element of a ring R which is idempotent, but not a zero divisor, is the identity element of R.
 - (g) If a and b are two zero divisors, then a + b is also a zero divisor in a ring R.
 - (h) In a finite field F, $a^2 + b^2 = 0$ implies a = 0 or b = 0 for all $a, b \in F$.
 - (i) In a field F, $(a+b)^{-1} = a^{-1} + b^{-1}$ for all nonzero elements such that $a+b \neq 0$.
 - (j) There exists a field with six elements.

- 3. Let R be a ring such that R has no zero divisors. Show that if every subring of R is an ideal of R, then R is commutative.
- 4. Prove or give counterexample
 - (a) There exist only two homomorphisms from the ring of integers into itself.
 - (b) The mapping $f: Z \to Z$ defined by f(n) = 3n is a group homomorphism, but not a ring homomorphism.
 - (c) The only isomorphism of a ring R onto itself is the identity mapping of R.
 - (d) Let R be a ring with 1. Let $f: R \to S$ be a ring homomorphism. Then f(1) is the identity element of S.
 - (e) A nonzero homomorphism from a field into a ring with more than one element is a monomorphism.
 - (f) Every nontrivial homomorphic image of an integral domain is an integral domain.
- 5. An idempotent e of a ring R is called a central idempotent if $e \in C(R)$, the center of the ring and $e^2 = e$. Let R be a ring with 1 and e be a central idempotent in R. Show that
 - (a) 1 e is a central idempotent in R;
 - (b) eR and (1-e)R are ideals of R;
 - (c) $R = eR \oplus (1 e)R$
- 6. Let R be a commutative ring with 1 and $f(x) = a_0 + a_1x + ... + a_nx^n \in R[x]$. If a_0 is a unit and $a_1, a_2, ..., a_n$ are nilpotent elements, prove that f(x) is invertible.
- 7. Let $f(x) = x^6 + x^3 + 1$. Show that f(x) is irreducible over \mathbb{Q} .
- 8. Give an example of a primitive polynomial which has no root in \mathbb{Q} but is reducible over \mathbb{Z} .
- 9. Show that a proper ideal I of a ring R is a maximal ideal if and only if for any ideal A of R either $A \subseteq I$ or A + I = R.
- 10. Let $f(x) = x^5 + 12x^4 + 9x^2 + 6$. Show that the ideal I = (f(x)) is maximal in $\mathbb{Z}[x]$.
- 11. The ring $R = \mathbb{Q}[x]/\langle x^4 16 \rangle$ is a direct sum of fields. Describe the fields explicitly and determine how many of each appear as direct summands.
- 12. Let $f: R \to S$ be a homomorphism of commutative rings. Prove that $I \subset S$ is a prime ideal, then $f^{-1}(I)$ is also a prime ideal. Give an example where I is maximal but $f^{-1}(I)$ is not maximal.

3 Fields

- 1. Let E be a field extension of the field F with [E:F]=p, where p is a prime. Show that for any element $a\in E\backslash K$ we have E=K(a). Hint: Study the subfields of E.
- 2. (i) Let F be a field and a, b be members of a field containing F. Suppose that a and b are algebraic of degree m and n over F and (m, n) = 1. Show that [F(a, b) : F] = mn. (ii) Show this is not necessarily true if $(m, n) \neq 1$.
- 3. Consider the unique factorization domain F[t], where F is a field and t is transcendental over F. Show that the polynomial $x^2 + tx + t \in F(t)[x]$ is irreducible over F(t). Also show that $x^2 + tx + t \in F(x)[t]$ is irreducible over F(x).
- 4. Find the splitting field for the following polynomials over \mathbb{Q} .

(i)
$$x^4 + 1$$
, (ii) $x^6 + x^3 + 1$

- 5. Find a splitting field S of $x^4 10x^2 + 21$ over \mathbb{Q} . Find $[S:\mathbb{Q}]$ and a basis for the splitting field over \mathbb{Q} .
- 6. If F is a field with a finite number of element, prove that F is not algebraically closed.
- 7. Let $f(x) = x^n 1 \in \mathbb{Q}[x]$. Show that the Galois group of f(x) over \mathbb{Q} is commutative.
- 8. Find all proper subfields of $\mathbb{Q}\left(\sqrt[3]{2},\sqrt{3},i\right)$.
- 9. Show that the Galois group of $f(x) = x^3 5$ over \mathbb{Q} is isomorphic to S_3 .
- 10. Determine the degree of the extension $\mathbb{Q}\left(\sqrt{3+2\sqrt{2}}\right)$