
Final Exam Practice
Math 511a

1 Groups

1. Determine all the homomorphisms from S3 to A4:

Solution 1 All homomorphisms have kernels. The only normal subgroups
of S3 are 1; A3; S3: Thus the image of S3 can go to a subgroup of A4 of
size 6; 2; 1: But there is no subgroup of A4 of order 6: Thus we can only
map by the trivial map or to a subgroup of size 2: If jHj = 2 with H � A4
then we map the elements of S3 according to whether they are odd or
even. We map into a subgroup of A4 such as h(12) (34)i by mapping even
permutations in S3 to the identity and odd ones to (12) (34) :

2. Let G be a group of order pqr; where p; q; r are primes and p > q > r:
Show that G is solvable.

Solution 2 The number of Sylow p-subgroups is 1 + kp; where 1 + kp
divides qr: Suppose k 6= 0: Since p > q > r; 1 + kp = qr: The number of
Sylow q-subgroups is 1+k0q; where 1+k0q divides pr: Suppose k0 6= 0: Since
q > r; either 1+ k0q = p or pr: In either case, 1+ k0q � p: The number of
Sylow r-subgroups is 1 + k00r; where 1 + k00r divides pq: Suppose k00 6= 0:
Then either 1 + k00r = q or p or pq: Hence, in either case, 1 + k00r � q:
Thus, G has qr (p� 1) elements of order p; at least p (q � 1) elements
of order q; and at least q (r � 1) elements of order r: Since G has pqr
elements, pqr � rq (p� 1) + p (q � 1) + q (r � 1) + 1: This implies that
0 � pq � p � q + 1 or 0 � (p� 1) (q � 1) : Therefore, (p� 1) (q � 1) = 0;
which implies that either p = 1 or q = 1; a contradiction. Thus either
k = 0 or k0 = 0 or k00 = 0: WLOG, suppose k = 0: Then G has a unique
Sylow p-subgroup, say, H: Now H is a normal subgroup of G and G=H
is of order qr: By a previous result this semester we know that G=H is
solvable. Since H is of order p; H is solvable. Hence, by Theorem 5.4
(Grove), G is Solvable.

3. Let G be the group of all n � n invertible matrices over R, n � 3: Show
that G is not solvable.

Solution 3 Let Eij be the n� n elementary matrix whose ijth entry is 1
and all else are zero. Then

EijErs =

�
Eis; j = r
0; j 6= r

�
:
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Now for the identity matrix I and for i 6= j; I+Eij 2 G and (I + Eij)�1 =
1�Eij : Let T be the subgroup generated by fI + Eij : i 6= jg : Since n � 3;
we can �nd an integer k such that 1 � i 6= k 6= j � n: Now

(I + Eik) (I + Ekj) (I + Eik)
�1
(I + Ekj)

�1
=

(I + Eik) (I + Ekj) (I � Eik) (I � Ekj) =
(I + Ekj + Eik + Eij) (1� Ekj � Eik + Eij) =
(I + Eij) :

Therefore, (I + Eij) 2 T 0; proving that T � T 0: As a result, T 0 = T: Thus,
T is not solvable and so G is not solvable.

4. Find all the composition series of the group Z=42Z. Verify that they are
equivalent.

Solution 4 Z=42Z � 2Z=42Z � 14Z=42Z � 42Z=42Z
Z=42Z � 2Z=42Z � 6Z=42Z � 42Z=42Z
Z=42Z � 3Z=42Z � 6Z=42Z � 42Z=42Z
Z=42Z � 3Z=42Z � 21Z=42Z � 42Z=42Z
Z=42Z � 7Z=42Z � 14Z=42Z � 42Z=42Z
Z=42Z � 7Z=42Z � 21Z=42Z � 42Z=42Z
Each of the above six composition series has three factors. These factors
are nothing but the groups Z2; Z3; Z7: Hence, all these composition series
are equivalent.

5. Find a central series G0 � G1 � � � � � Gn in D4 such that G0 = f1g and
Gn = D4:

Solution 5 D4 =


a; b : a4 = b2 = 1; ba = a3b

�
: Now

f1g = G0 � G1 =
�
1; a2

	
� G2 =

�
1; a; a2; a3

	
� G3 = D4

is a normal series in D4: Since jD4=G1j = 4 and jD4=G2j = 2; it follows
that D4=G1 and D4=G2 are abelian groups. Thus, G2=G1 � D4=G1 =
Z (D4=G1) and D4=G2 � Z (D4=G2) : Since Z (D4) =

�
1; a2

	
= G1; it

follows that G1=G0 � Z (D4=G0) : Hence f1g �
�
1; a2

	
�
�
1; a; a2; a3

	
�

D4 is a central series.

6. Give an example of a group G such that G is not nilpotent, but G contains
a normal subgroup H such that H and G=H are nilpotent.

Solution 6 The symmetric group S3 is not nilpotent as it is centerless.
Now A3 is nilpotent as it is abelian and it is normal in S3: Also, jS3=A3j =
2 and so is abelian and thus nilpotent.
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7. List all normal subgroups of A5 �A5:

Solution 7 1� 1; A5 � 1; 1�A5; A5 �A5

8. Suppose S is a set and the symmetric group S4 acts transitively on S:
Determine all possibilities for jSj :

Solution 8 There is a bijection between all possible actions of a group
G on a set A with the possible homomorphisms from G to SA: By the
Orbit stabilizer theorem we know that jOrbG (s)j = [G : StabG (s)] : For a
transitive action, the size of the entire set occurs as the index of a subgroup
of G: This gives us a list of possible set sizes. The most canonical map to
use is G�G=H ! G=H by g1 � g2H ! g1g2H and this is a well-de�ned
action and we can identify each of the elements of our given set with one
of the cosets. This is a transitive action as if we want to move g2H to g3H
we just multiply by g3g

�1
2 as our g1: So we must �nd all possible subgroups

of S4: They have size 1; 2; 3; 4; 6; 8; 12; 24: So all divisors of 24 occur as
possible sizes of S:

9. Show that a group of order 48 must have a normal subgroup of order a
power of 2:

Solution 9 jGj = 24 �3. So there are 1 or 3 2-sylow subgroups of order 16:
If there is one it must be normal and so we are done. If not there are 3, call

them A;B;C: The order of the subset AB is jABj = jAj jBj
jA \Bj � 48 = jGj :

So
16 � 16
jA \Bj � 48 where jA \Bj divides jGj as it is a subgroup. The only

possibilities are 16 or 8: But we know it is not 16 as A and B are distinct.
So it must be 8: So A \ B C A and A \ B C B: So AB � NG (A \B) :
But jABj = 32 and NG (A \B) � G it must have have order 48: Thus
NG (A \B) = G and so A \B CG and has order 23 = 8:

10. Let G be the group of real 2� 2 matrices of determinant 1; and let H be
the subgroup of diagonal matrices.

(a) Find the normalizer of H in G; NG (H) :

(b) Find the representatives for the cosets in NG (H) :

Solution 10 Did in review session!

11. Let p be a prime number. Let Fp be the �eld of p elements. Let G =
GL2 (Fp) be the 2� 2 invertible matrices with entries in Fp: Let G act on
the vector space V = Fp�Fp in the usual way (by matrix multiplication).

(a) Show that G has exactly 2 orbits on V:
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(b) Compute the order of the stabilizer of (1; 0) :

(c) Use part (b) to compute the order of G:

Solution 11 (a) The element (0; 0) 2 V composes one orbit; certainly
A0 = 0 for any matrix A; and if Ax = 0 for an invertible matrix A; then
x = A�10 = 0: We shall show now that the rest of V composes the second
orbit. To establish this, we must show, given any nonzero x; y 2 V; the
existence of an invertible matrix A such that Ax = y: If x; y are linearly
dependent, then �x = y and so A = �I: Use linear algebra and there is
always a solution to Ax = y if A is invertible.

(b)
�
a b
c d

��
1
0

�
=

�
1
0

�
implies a = 1 and c = 0 and so for the matrix

to be invertible we have p�1 choices for d and p for b so there are p (p� 1)
total. Thus jStabG (1; 0)j = p2 � p:
(c) The index of the stabilizer of (1; 0) is the size of the orbit of (1; 0) ; the
order of V is p2 and so [G : Stab] = p2� 1: Thus jGj =

�
p2 � 1

� �
p2 � p

�
:

12. Either give an example of a �nite group having its center of prime index
or prove that such a group cannot exist.

Solution 12 It cannot exist. If it did, then the quotient would be cyclic
and thus abelian. Thus the group was abelian (proved earlier this year). If
the group is abelian the index is 1:

13. Suppose p is a prime and G is a �nite group. A subgroup K of G is called
a normal p-complement if K CG and there is a Sylow p-subgroup P such
that K\P = 1 and KP = G: Show that if G has a normal p-complement,
then it is unique. Give an example.

Solution 13 Example: Z15 is the internal direct sum of its cyclic sub-
groups of order 3 and 5; call them K and P: Here K is a normal 3-
complement; certainly K is normal as it is abelian and there is a 5-Sylow,
namely P; such that K \ P = 1 and KP = G:
Let the p-Sylow subgroup P have order pk: Since KP = G and K \P = 1;
we must have jKj = jGj =pk: The claim is that K must be the set of
elements of G of order not a multiple of p: (This would show K to be
unique). Let H denote the set of elements. Since each element of K
has order dividing jGj =pk; certainly K � H: Now consider the canonical
projection map G ! G=K; observing that G=K is a p-group. Under the
group homomorphism, the order of the image of an element must divide
the order of the original element. But the only possible orders in G=K are
1; p; p2 and so on. Hence any element of H gets mapped to an element
of order 1; i.e., it represents the trivial coset of K and thus lies in K: In
short, H � K: Combining the results, we have K = H and thus K is
unique.
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14. Let H be the subgroup of S7; the symmetric group of 7 letters, generated
by all 3-cycles. Is the permutation (1234) in H? Explain.

Solution 14 The 3-cycles generate the alternating subgroup of Sn for
n � 3: Thus H is the alternating group A7 and does not contain the
odd permutation (1234) :

15. Give an example or prove that there does not exist a group of order 5!
acting transitively on a set with 9 elements.

Solution 15 There does not exist such an action. In any group action,
the size of an orbit always equals the index of the stabilizer of a point in
that orbit. A transitive action has a single orbit. Thus we have a stabilizer
of index 9; but this is impossible since 9 does not divide 5!:

16. What are the conjugacy classes of S3?

Solution 16 fidg ; f(12) ; (23) ; (13)g ; and f(123) ; (132)g

17. Suppose G is a group of order 45 with a normal subgroup P of order 32:
Show that G is abelian. (Hint: Aut (P ) has order 6 or 24 according to
whether P is cyclic or elementary abelian).

Solution 17 Recall the quotient G=CG (P ) is isomorphic to a subgroup
of Aut (P ) ; where CG (P ) is the centralizer of P: Aut (P ) has order 6 or
24: On the other hand, since the order of P is the square of a prime,
P is an abelian group, hence P � CG (P ) : It follows that jCG (P )j is
divisible by 9; which implies that jG=CG (P )j = 1 or 5: Together these
imply jG=CG (P )j = 1; i:e:; CG (P ) = G and P � Z (G) : Since G=Z (G)
is cyclic, G must be an abelian group.

18. True or false: If G is a nonabelian group then it has abelian subgroups
H� such that G = [�H� and \�H� = 1:

Solution 18 I think false. Take the quaternion group of size 8:

19. Show that the alternating group A6 has no subgroup of order 72:

Solution 19 Consider the homomorphism from A6 to S5: See Grove p.15
for a discussion on the natural action of G on S = fxH : x 2 Gg with
H a subgroup of G: An element x 2 G is in the kernel of the action if
and only if xyH = yH: Thus the kernel is K = \fHz : z 2 Gg : Then
this permutation action of G on S is a homomorphism � from G into
Perm (S) ; which is isomorphisc to Sn: Thus the kernel of the action must
be trivial because A6 is simple. But this is not a faithful action as A6 is
not isomorphic to a subgroup of S5: Thus we cannot have a subgroup of
order 72:
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2 Rings

1. Determine positive integers n such that Zn has no nonzero nilpotent ele-
ments.

Solution 20 The claim is that n is a square free integer, i.e. n = p1 � � � pk
where the p0is are distinct.

Suppose that n = p1 � � � pk: Let [a] 2 Zn be nilpotent. Then am = 0
for some integer m: Hence, n divides am and so p1 � � � pk divides am:
Then pijam for all i = 1; :::; k: Since the p0is are prime, pija for all
i = 1; 2; :::; k: Since p1; :::; pk are distinct primes, we must have p1 � � � pkja;
i:e:; nja and so a = 0: This implies that Zn has no nonzero nilpotent el-
ements. Conversely, suppose that Zn has no nonzero nilpotent elements.
Let n = pm1

1 � � � pmk

k ; where the p0is are distinct primes and mi � 1:
Let m = max fm1; :::;mkg : Now [p1p2 � � � pk]m = pm1 � � � pmk = 0 since
nj (pm1 � � � pmk ) : Also, since Zn has no nonzero nilpotent elements, [p1 � � � pk] =
0: Hence, nj (p1 � � � pk) and so (pm1

1 � � � pmk

k ) j (p1 � � � pk) : Thus mi � 1 for
all i: So n is square free.

2. Write the proof if the statement is true; otherwise give a counterexample

(a) In a ring R; if a and b are idempotent elements, then a + b is an
idempotent element.

(b) In a ring R; if a and b are nilpotent elements, then a+ b is nilpotent.

(c) Every �nite ring with 1 is an integral domain.

(d) There exists a �eld with seven elements.

(e) The characteristic of an in�nite ring is always 0:

(f) An element of a ring R which is idempotent, but not a zero divisor,
is the identity element of R:

(g) If a and b are two zero divisors, then a+ b is also a zero divisor in a
ring R:

(h) In a �nite �eld F; a2 + b2 = 0 implies a = 0 or b = 0 for all a; b 2 F:
(i) In a �eld F; (a+ b)�1 = a�1+ b�1 for all nonzero elements such that

a+ b 6= 0:
(j) There exists a �eld with six elements.

Solution 21 (a) False: think matrices (b) False: matrices (c) False: Z4
(d) True: F7 (e) False: Z2 � Z2 � � � � (f) True (g) False: matrices E11
and E22 (h) False: C (i) False: (1 + 1)�1 6= 1+1 (j) False: only order pn:

3. Let R be a ring such that R has no zero divisors. Show that if every
subring of R is an ideal of R; then R is commutative.
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Solution 22 Let 0 6= a 2 R: Then C (a) = fx 2 R : xa = axg is a subring
of R and hence an ideal of R; Thus, ra 2 C (a) for all r 2 R: Let r 2 R:
Now ara = ra2 implies that (ar � ra) a = 0: Since R has no zero divisors
and a 6= 0; ar � ra = 0 and so ar = ra: Hence, a is in the center of R:
Since a is arbitrary, R is commutative.

4. Prove or give counterexample

(a) There exist only two homomorphisms from the ring of integers into
itself.

(b) The mapping f : Z ! Z de�ned by f (n) = 3n is a group homomor-
phism, but not a ring homomorphism.

(c) The only isomorphism of a ring R onto itself is the identity mapping
of R:

(d) Let R be a ring with 1: Let f : R ! S be a ring homomorphism.
Then f (1) is the identity element of S:

(e) A nonzero homomorphism from a �eld into a ring with more than
one element is a monomorphism.

(f) Every nontrivial homomorphic image of an integral domain is an
integral domain.

Solution 23 (a) True: f (1) = 1 or 0: (b) True: Check group hom and
see 1: (c) False: Take C and conjugation. (d) False: the zero map. This
is true only if the map is surjective I believe (e) True: What about the
kernel? (f) False: Map Z ! Z6:

5. An idempotent e of a ring R is called a central idempotent if e 2 C (R) ;
the center of the ring and e2 = e: Let R be a ring with 1 and e be a central
idempotent in R: Show that

(a) 1� e is a central idempotent in R;
(b) eR and (1� e)R are ideals of R;
(c) R = eR� (1� e)R

Solution 24 (a) (1� e) (1� e) = 1� e� e+ e2 = 1� e� e+ e = 1� e:
Also, for all a 2 R; a (1� e) = a � ae = a � ea = (1� e) a: Hence 1 � e
is a central idempotent.

(b) Now eR is a right ideal of R: Let a 2 R: Then a (eR) = (ae)R = (ea)R
(since e 2 C (R)) = e (aR) � eR: Hence, eR is also a left ideal. Thus, eR
is an ideal of R: Similarly, (1� e)R is an ideal of R:
(c) Let a 2 R: Then a = ea + a � ea = ea + (1� e) a 2 eR + (1� e)R:
Hence, R = eR + (1� e)R: Suppose b 2 eR \ (1� e)R: Then there exist
c; d 2 R such that b = ec = (1� e) d: Hence eb = e2c = ec = b and eb =
e (1� e) d =

�
e� e2

�
d = (e� e) d = 0: Thus, b = 0: So the intersection

is trivial and we have our result.
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6. Let R be a commutative ring with 1 and f (x) = a0 + a1x+ :::+ anxn 2
R [x] : If a0 is a unit and a1; a2; :::; an are nilpotent elements, prove that
f (x) is invertible.

Solution 25 We prove this result by induction on n = deg f (x) : If n = 0;
then f (x) = a0 and a0 is a unit so f (x) is invertible. Assume the result
is true for all polynomials of the above form and degree < n: Suppose now
f (x) = a0 + a1x+ :::+ anx

n 2 R [x] such that a0 is a unit and a1; :::; an
are nilpotent and deg f (x) = n: Let g (x) = a0+a1x+ :::+an�1xn�1: Note
that deg g (x) < n: Hence, by the induction hypothesis, g (x) is invertible.
Since an is nilpotent, there exists a positive integer m such that amn = 0:
Then

(g (x) + anx
n) ��

g (x)
�1 � ang (x)�2 xn + a2ng (x)

�3
x2n � :::+ (�1)m�1 am�1n g (x)

�(m�1)
x(m�1)n

�
=

1:

Thus f (x) is invertible.

7. Let f (x) = x6 + x3 + 1. Show that f (x) is irreducible over Q.

Solution 26 Now f (x+ 1) = x6+6x5+15x4+21x3+18x2+9x+3 and
this is irreducible by Eisenstein with p = 3 so f (x) is irreducible.

8. Give an example of a primitive polynomial which has no root in Q but is
reducible over Z.

Solution 27 Let f (x) = x4 + 2x2 + 1.

9. Show that a proper ideal I of a ring R is a maximal ideal if and only if
for any ideal A of R either A � I or A+ I = R:

Solution 28 Suppose I is a maximal ideal of R and let A be any ideal of
R: If A " I; then A + I is an ideal of R such that I � A + I: Since I is
maximal, it follows that A+ I = R:

Conversely, assume that the proper ideal I satis�es the given condition.
Let J be an ideal of R such that I � J: Now J " I: Therefore I + J = R:
But I + J = J: Thus, J = R: Hence, I is a maximal ideal of R:

10. Let f (x) = x5+12x4+9x2+6: Show that the ideal I = (f (x)) is maximal
in Z [x] :

Solution 29 I is a maximal ideal if we can prove that f (x) is an irre-
ducible polynomial in Z [x] : Then content of f (x) is 1 and so it is primi-
tive. By Eisenstein and p = 3 we see that f (x) is irreducible. Thus it is
a maximal ideal.
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11. The ring R = Q [x] =


x4 � 16

�
is a direct sum of �elds. Describe the �elds

explicitly and determine how many of each appear as direct summands.

Solution 30 In Q [x] the principal ideal generated by x4�16 = (x� 2) (x+ 2)
�
x2 + 4

�
is the same as the product of the principal ideals generated by each irre-
ducible factor. By the Chinese Remainder Theorem we have

Q [x]
hx� 2i hx+ 2i hx2 + 4i

�=
Q [x]
hx� 2i �

Q [x]
hx+ 2i �

Q [x]
hx2 + 4i=

Now Q [x] is a UFD, hence irreducible elements are prime, and in general,
prime elements generate principal prime ideals. Furthermore, Q [x] is a
PID, hence nonzero prime ideals are maximal, and thus each term in the
direct sum consists of Q [x] modulo a maximal ideal; that is, each term is
a �eld. Each such �eld contains a copy of Q, and thus may be viewed a a
vector space over Q; as such, the dimension (or degree) over Q is the same
as the degree of the polynomial that generated the corresponding maximal
ideal. In particular, the �rst two �elds are just Q, while the last �eld is a
degree 2 extension of Q (i) : Thus the answer is Q�Q�Q (i) :

12. Let f : R ! S be a homomorphism of commutative rings. Prove that
I � S is a prime ideal, then f�1 (I) is also a prime ideal. Give an example
where I is maximal but f�1 (I) is not maximal.

Solution 31 (a) We already show previously that the preimage of any
ideal is an ideal. Let I be prime. Let ab 2 f�1 (I) : Then f (ab) =
f (a) f (b) 2 I; so that either f (a) 2 I or f (b) 2 I; and thus either
a 2 f�1 (I) or b 2 f�1 (I) : Therefore f�1 (I) is prime.
(b) Z [x] ! Q [x] ; an injection. Take hxi 2 Q [x] but the preimage is not
maximal in Z [x] as it is contained in h2; xi :

3 Fields

1. Let E be a �eld extension of the �eld F with [E : F ] = p; where p is a
prime. Show that for any element a 2 EnK we have E = K (a) : Hint:
Study the sub�elds of E:

Solution 32 Done in review session.

2. (i) Let F be a �eld and a; b be members of a �eld containing F: Suppose
that a and b are algebraic of degree m and n over F and (m;n) = 1: Show
that [F (a; b) : F ] = mn: (ii) Show this is not necessarily true if (m;n) 6= 1:
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Solution 33 (i) [F (a) : F ] = m and [F (b) : F ] = n:

[F (a; b) : F (a)] [F (a) : F ] = [F (a; b) : F ] = [F (a; b) : F (b)] [F (b) : F ] :

Thus

[F (a; b) : F (a)]m = [F (a; b) : F (b)]n:

Thus nj [F (a; b) : F (a)] and mj [F (a; b) : F (b)] : As (m;n) = 1 we thus
have that mnj [F (a; b) : F ] : But also [F (a; b) : F ] � mn (why?) and thus
we have our result.

3. Consider the unique factorization domain F [t] ; where F is a �eld and t is
transcendental over F: Show that the polynomial x2 + tx+ t 2 F (t) [x] is
irreducible over F (t) : Also show that x2 + tx+ t 2 F (x) [t] is irreducible
over F (x) :

Solution 34 Now t - 1; tjt but t2 - t: Note t is prime in F [t] : Thus,
x2+tx+t 2 F (t) [x] is irreducible over F (t) by Eisenstein. If we consider
x2+tx+t as a polynomial in t over F (x) ; then x2+tx+t = (x+ 1) t+x2:
It follows that Eisenstein does not apply. However, since (x+ 1) t+ x2 is
of degree 1 in t; it is irreducible over F (x) :

4. Find the splitting �eld for the following polynomials over Q.
(i) x4 + 1; (ii) x6 + x3 + 1

Solution 35 (i) f (x) =
�
x2 +

p
2x+ 1

� �
x2 �

p
2x+ 1

�
over Q

�p
2
�
:

Therefore the roots are

�
p
2� i

p
2

2

Thus you can show that f (x) splits over Q
�p
2; i
�
:

(ii) Note that x9 � 1 =
�
x6 + x3 + 1

� �
x3 � 1

�
: The roots of x9 � 1 are

1; !; !2; :::; !8 where ! = e2�i=9 and 1; !3; !6 are the roots of x3 � 1.
Thus !; !2; !4; !5; !7; !8 are the roots of x6 + x3 + 1: Therefore S =
Q
�
!; !2; !4; !5; !7; !8

�
= Q (!) is the splitting �eld over Q. Since x6 +

x3 + 1 is irreducible over Q, [S : Q] = 6:

5. Find a splitting �eld S of x4 � 10x2 +21 over Q. Find [S : Q] and a basis
for the splitting �eld over Q.

Solution 36 f (x) =
�
x2 � 3

� �
x2 � 7

�
: So S = Q

�p
2;
p
7
�
: Thus [S : Q] =

4 and a basis is
�
1;
p
2;
p
7;
p
14
	

6. If F is a �eld with a �nite number of element, prove that F is not alge-
braically closed.
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Solution 37

7. Let f (x) = xn � 1 2 Q [x] : Show that the Galois group of f (x) over Q is
commutative.

Solution 38 Let ! = e2�i=n: Then the roots of f (x) are 1; !; :::; !n�1:
Clearly K = Q (!) is a splitting �eld of f (x) : Let �; � 2 Gal (K=Q) : Now
� (!) and � (!) are roots of f (x) : Hence, � (!) = !k and � (!) = !j for
some k; j; 1 � j; k � n� 1: Now (� � �) (!) = !kj = (� � �) (!) : Let y 2
K: Then y =

Pn�1
l=0 al!

l for some al 2 Q, 1 � l � n: Now (� � �) (y) =
(� � �)

�Pn�1
l=0 al!

kjl
�
: Similarly, (� � �) (y) =

Pn�1
l=0 al!

jkl: Therefore,

� � � = � � �: Thus Gal (K=Q) is abelian.

8. Find all proper sub�elds of Q
�
3
p
2;
p
3; i
�
:

Solution 39 Did in Review session

9. Show that the Galois group of f (x) = x3 � 5 over Q is isomorphic to S3:

Solution 40 The polynomial is irreducible (Eisenstein) and has a split-
ting �eld of Q

�
3
p
5; e2�i=3

�
and is a degree six extension. Thus as the

Galois group is a subgroup of S3 it must be S3:
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