Exam #4 solutions · Thursday, December 4, 2008

MATH 124 \cdot Calculus I \cdot Section 26 \cdot Fall 2008

Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation, unless a problem specifically requests a verbal response.

John Kerl (kerl at math dot arizona dot edu).

Problem 1. Let

$$x(t) = 2t^3 - 15t^2 + 24t + 7$$
$$y(t) = t^2 + t + 1.$$

Find all values of t such that this curve has a vertical tangent line. Solution: The tangent line is vertical when dx/dt = 0:

$$x(t) = 2t^{3} - 15t^{2} + 24t + 7$$

$$\frac{dx}{dt} = 6t^{2} - 30t + 24$$

$$6t^{2} - 30t + 24 = 0$$

$$t^{2} - 5t + 4 = 0$$

$$(t - 1)(t - 4) = 0$$

$$t = 1, 4.$$

Problem 2.

Part (a). Find the average value of

$$G(y) = \frac{A}{y} + By$$

over the interval $-4 \le y \le -1$, where A and B are positive constants.

Solution: The average value is

$$\frac{1}{b-a} \int_{y=a}^{y=b} G(y) \, dy$$

with a = -4 and b = -1. This is

$$\frac{1}{-1 - -4} \int_{y=-4}^{y=-1} \left(\frac{A}{y} + By\right) dy = \frac{A}{3} \int_{y=-4}^{y=-1} \frac{1}{y} dy + \frac{B}{3} \int_{y=-4}^{y=-1} y dy$$

$$= \frac{A}{3} \left[\ln(|y|)\right]_{y=-4}^{y=-1} + \frac{B}{3} \left[\frac{y^2}{2}\right]_{y=-4}^{y=-1}$$

$$= \frac{A}{3} \left(\ln(1) - \ln(4)\right) + \frac{B}{3} \left(\frac{1}{2} - \frac{16}{2}\right)$$

$$= -\frac{A \ln(4)}{3} - \frac{7.5B}{3}$$

$$= -\frac{A \ln(4)}{3} - 2.5B.$$

Part (b). If the units of y and G(y) are inches and gallons, respectively, what are the units of the average value found in part (a)?

Solution: Intuitively, the average value of a gallons function should be gallons. Mechanically, the units of the integral are gallons times inches; the denominator (-1 - 4) has units of inches. Thus,

$$\frac{1}{\text{inches}} \cdot (\text{gallons} \cdot \text{inches}) = \text{gallons}.$$

Problem 3. Suppose the rate of change of the price of a stock is R(t) where t is measured in days since the start of the year and R(t) is dollars per day.

Part (a). What are the units of $\int_{31}^{59} R(t)dt$?

Solution: The units of the integral are R units times t units. This is dollars per day times days, i.e.

Part (b). Give a practical interpretation of $\int_{31}^{59} R(t)dt$. Solution: This is the change in the stock price between the 31st and 59th days of the year. (Note that Jan. 1 would be the 0th day.) You may also notice that days 31-59 are the month of February (in a non-leap year).

Part (c). If R(t) < 0 for $30 \le t \le 60$, can you tell what the sign of $\int_{31}^{59} R(t)dt$ is? If so, what is the sign? If not, why not?

Solution: If the integrand is negative throughout the interval of integration, then the integral's value will be negative: all the area will be below the horizontal axis.

Part (d). If R(t) < 0 for $30 \le t < 40$ and R(t) > 0 for $40 < t \le 60$, can you tell what the sign of $\int_{31}^{59} R(t)dt$ is? If so, what is the sign? If not, why not? Solution: The falling-price period (9 days) is shorter than the rising-price period (19 days), so one might

be tempted to say there was a net gain. However, we don't know anything about the magnitude of R — the area below the horizontal axis for days 31-40 might be more or less than the area above the horizontal axis for days 40-59. So, we can't determine the sign of the integral based on the information we have.

Problem 4. Find the exact area of the region between $f(x) = x^{2/3}$ and $g(x) = \sin(x)$ over the interval $1/8 \le x \le \pi$.

Solution: Graphing, we see that $x^{2/3}$ is on top of $\sin(x)$. So, we compute

$$\int_{x=1/8}^{x=\pi} (f(x) - g(x)) dx = \int_{x=1/8}^{x=\pi} (x^{2/3} - \sin(x)) dx$$

$$= \left[\frac{3}{5} x^{5/3} + \cos(x) \right]_{x=1/8}^{x=\pi}$$

$$= \left(\frac{3}{5} \pi^{5/3} + \cos(\pi) \right) - \left(\frac{3}{5} \left(\frac{1}{8} \right)^{5/3} + \cos(1/8) \right)$$

$$= \frac{3}{5} \pi^{5/3} - 1 - \frac{3}{5} \frac{1}{32} - \cos(1/8)$$

$$= \frac{3}{5} \pi^{5/3} - \cos(1/8) - 1 - \frac{3}{160}$$

$$= \frac{3}{5} \pi^{5/3} - \cos(1/8) - \frac{163}{160}.$$

Problem 5. Label the following statements as correct (C) or incorrect (I):

Part (a). If f'(x) < 0 on an interval then f(x) is decreasing on that interval.

Solution: This is correct.

Part (b). If f'(x) = 0 at a point then f(x) has an inflection point at that point.

Solution: This is incorrect. Change "inflection point" to "critical point" and it would be correct. A critical point of f(x) is, by defintion, a point where f'(x) is zero or undefined.

Part (c). If f'(x) has a maximum or minimum at a point then f(x) has a critical point there.

Solution: This is incorrect. Change "critical point" to "inflection point" and it would be correct.

Problem 6. Let

$$\frac{dP}{dt} = t(1-t).$$

Part (a). Find a general solution for P.

Solution: Antidifferentiating both sides, we get

$$P = \int t(1-t) dt$$

= $\int (t-t^2) dt$
= $\frac{t^2}{2} - \frac{t^3}{3} + C$.

Part (b). Find a specific solution for P if P(3) = 2. Solution:

$$P = \frac{t^2}{2} - \frac{t^3}{3} + C$$

$$2 = \frac{3^2}{2} - \frac{3^3}{3} + C$$

$$2 = \frac{9}{2} - 9 + C$$

$$2 = -\frac{9}{2} + C$$

$$C = 2 + \frac{9}{2} = \frac{13}{2}$$

$$P = \frac{t^2}{2} - \frac{t^3}{3} + \frac{13}{2}.$$

Problem 7. Let $F(x) = \int_{10}^{x} f(t)dt$, with the following known values for f(t):

	t	0	10	20	30	40
Ī	f(t)	-1.25	-1.2	-1.1	-0.9	-0.7

Estimate F(20) and F(30).

Solution: We have

$$F(20) = \int_{10}^{20} f(t) dt$$
 and $F(30) = \int_{10}^{30} f(t) dt$.

There are various ways to estimate this.

• Using left-hand sums, we have

$$\int_{10}^{20} f(t) dt \approx 10 \cdot (-1.2) = -12$$

and

$$\int_{10}^{30} f(t) dt \approx 10 \cdot (-1.2) + 10 \cdot (-1.1) = -12 - 11 = -23.$$

• Using right-hand sums, we have

$$\int_{10}^{20} f(t) dt \approx 10 \cdot (-1.1) = -11$$

and

$$\int_{10}^{30} f(t) dt \approx 10 \cdot (-1.1) + 10 \cdot (-0.9) = -11 - 9 = -20.$$

Problem 8.

Part (a). Find

$$\frac{d}{d\theta} \int_{\pi/2}^{\theta} \frac{\sin(x)}{x} dx.$$

Solution: When we see the derivative of an integral function, we should think of the Second Fundamental Theorem of Calculus:

$$\frac{d}{d\theta} \int_{\pi/2}^{\theta} \frac{\sin(x)}{x} dx = \frac{\sin(\theta)}{\theta}.$$

Part (b). Find

$$\frac{d}{d\theta} \int_{\pi/2}^{\pi - e^{-\theta}} \frac{\sin(x)}{x} \, dx.$$

Solution: To use the Second Fundamental Theorem of Calculus and the chain rule, we first do ourselves the favor of naming the integrand:

$$f(x) = \frac{\sin(x)}{x}.$$

Then the upper and lower limits are $u(\theta) = \pi - e^{-\theta}$ and $\ell(\theta) = \pi/2$, respectively. We drop the upper and lower limits into the integrand, factoring in the speeds of the limits:

$$\frac{d}{d\theta} \int_{\pi/2}^{\pi - e^{-\theta}} \frac{\sin(x)}{x} dx = f(u(\theta)) \cdot u'(\theta) - f(\ell(\theta)) \cdot \ell'(\theta)$$

$$= \frac{\sin(\pi - e^{-\theta})}{\pi - e^{-\theta}} \cdot e^{-\theta} - \frac{\sin(\pi/2)}{\pi/2} \cdot 0$$

$$= \frac{\sin(\pi - e^{-\theta})}{\pi - e^{-\theta}} \cdot e^{-\theta}.$$