## Exam #3 solutions · Thursday, November 6, 2008

MATH 124  $\cdot$  Calculus I  $\cdot$  Section 26  $\cdot$  Fall 2008

Note: Some of my solutions are wordy, for the sake of explanation. All I expect of you is computation, unless a problem specifically requests a verbal response.

John Kerl (kerl at math dot arizona dot edu).

**Problem 1.** Consider the following table of values of a function f and its first two derivatives.

|    | x      | -3   | -1  | 1   | 3   | 5    |
|----|--------|------|-----|-----|-----|------|
|    | f(x)   | 3.0  | 4.0 | 5.0 | 8.0 | 9.0  |
|    | f'(x)  | 1.0  | 0.0 | 0.5 | 1.0 | 0.3  |
| Γ. | f''(x) | -2.0 | 0.0 | 1.4 | 0.0 | -0.4 |

Furthermore, f' and f'' have no zeroes other than the ones shown.

**Part** (a). Does f have a critical point at x = -1? Why or why not?

Solution: True: definition of critical point.

**Part** (b). Does f have a local maximum at x = -1? Why or why not?

Solution: False: f' is positive on either side, so f fails the first derivative test at x = -1. The second derivative test is inconclusive since f''(-1) is 0.

Part (c). Does f have an inflection point at x = 3? Why or why not?

Solution: True: f''(3) = 0 and f'' changes sign at x = 3.

**Problem 2.** Consider the curve

$$\ln(xy) = 2x.$$

Part (a). Find dy/dx.

Solution: Differentiating implicitly, we have

$$\frac{d}{dx}(\ln(xy)) = \frac{d}{dx}(2x)$$

$$\frac{1}{xy}\left(y + x\frac{dy}{dx}\right) = 2$$

$$y + x\frac{dy}{dx} = 2xy$$

$$x\frac{dy}{dx} = 2xy - y$$

$$\frac{dy}{dx} = \frac{y(2x - 1)}{x}.$$

**Part (b).** Find an equation for the tangent line the curve at the point  $(x, y) = (1, e^2)$ . Solution: Plugging x = 1 and  $y = e^2$  into the above, we have

$$\frac{dy}{dx}\bigg|_{x=1,y=e^2} = \frac{e^2(2\cdot 1-1)}{1} = e^2.$$

This is the m. The a and b are 1 and  $e^2$ . So we have

$$y = m(x - a) + b$$
$$= e2(x - 1) + e2$$
$$= e2x.$$

Note: We can also differentiate this explicitly if we like. First solve for y:

$$\ln(xy) = 2x$$

$$xy = e^{2x}$$

$$y = \frac{e^{2x}}{x}$$

$$\frac{dy}{dx} = \frac{2xe^{2x} - e^{2x}}{x^2} = \frac{e^{2x}(2x - 1)}{x^2}$$

$$\frac{dy}{dx}\Big|_{x=1, y=e^2} = \frac{e^2(2 - 1)}{1^2} = e^2.$$

The tangent-line calculation is the same.

## Problem 3.

Part (a). Find B so that

$$G(x) = B2^x + 2^{-x}$$

has a critical point at x = -1.

Solution: A critical point is where G'(x) = 0 or is undefined. This is an everywhere differentiable function, so we need to solve G'(x) = 0.

$$G'(x) = B \ln(2)2^{x} - \ln(2)2^{-x}$$
$$= \ln(2) (B2^{x} - 2^{-x}).$$

Solving for B in G'(-1) = 0, we have

$$\ln(2) (B2^{-1} - 2^{1}) = 0$$

$$B2^{-1} = 2^{1}$$

$$\frac{1}{2}B = 2$$

$$B = 4.$$

Part (b). Is this critical point a minimum, maximum, or neither? Explain your reasoning.

Solution: This is a minimum, as can be read off the graph. Alternatively, note that the second derivative is  $G''(x) = \ln(2)^2 (B2^x + 2^{-x})$ . This is positive for all x, and in particular for x = -1. So, by the second-derivative test, this critical point is a local (in fact, global) minimum.

**Problem 4.** For each of the following, does the limit exist? If so, what is it, and why? If not, why not?

Part (a).  $\lim_{t\to 0} \frac{1-\cosh t}{t^2}$ 

Solution: Since  $\cosh(0) = 1$ , this is a 0/0 situation and l'Hôpital's rule applies. Differentiating top and bottom, we have

$$\lim_{t\to 0}\frac{1-\cosh t}{t^2}=\lim_{t\to 0}\frac{-\sinh t}{2t}.$$

This is still a 0/0 situation, so we need to use l'Hôpital's rule again:

$$\lim_{t \to 0} \frac{-\sinh t}{2t} = \lim_{t \to 0} \frac{-\cosh t}{2}.$$

Now we can set t = 0 to obtain -1/2. (This also matches what you can see if you graph  $(1 - \cosh(t))/t^2$  on your calculator.)

Part (b).  $\lim_{z\to 0} \frac{3^z}{z^3}$ 

Solution: The numerator goes to 1 as  $z \to 0$ ; the denominator goes to zero as  $z \to 0$ . Thus, the limit does not exist. (This is neither a 0/0 case nor an  $\infty/\infty$  case, so l'Hôpital's rule does not apply.)

**Problem 5.** The east and west sides of a rectangular enclosure cost \$50 per meter; the north and south sides cost \$80 per meter. Find the dimensions of the enclosure with least cost enclosing an area of 1000 square meters.

Solution: Let x be the length of the north and south sides; Let y be the length of the east and west sides. Writing down the given information, we have

$$xy = 1000$$
$$C = 160x + 100y.$$

We need to optimize the cost C, which is currently in terms of two variables. Using the area expression to eliminate a variable we get

$$y = \frac{1000}{x}$$
$$C = 160x + \frac{100000}{x}.$$

Extrema occur at boundary points and critical points. When x = 0, there is no area; when x gets big (so y goes to 0) there is no area. So, it suffices to look at critical points of C. We have

$$\frac{dC}{dx} = 160 - \frac{100000}{x^2}.$$

$$160 - \frac{100000}{x^2} = 0$$

$$\frac{100000}{x^2} = 160$$

$$x^2 = \frac{100000}{160} = \frac{10000}{16}$$

$$x = \sqrt{\frac{10000}{16}} = \frac{100}{4} = 25.$$

Then

$$y = \frac{1000}{25} = 40.$$

**Problem 6.** The trajectory of an orbiting object is described by

$$r(1 + 0.2\cos(\theta)) = 10.$$

(The units of r are thousands of kilometers, or megameters if you like, and the units of  $\theta$  are radians.) Find  $d\theta/dt$  when  $\theta = \pi/3$ , given that dr/dt = -20 megameters per hour when  $\theta = \pi/3$ . Compute your answer to three decimal places.

Solution: First note, as I announced in class, that you don't need to know polar coordinates to do this problem.

Here the quantities r and  $\theta$  both vary in time; these quantities are related by the above equation. Differentiating both sides with respect to time, we get

$$\frac{dr}{dt}(1+0.2\cos(\theta)) - 0.2r\sin(\theta)\frac{d\theta}{dt} = 0$$

$$\frac{dr}{dt}(1+0.2\cos(\theta)) = 0.2r\sin(\theta)\frac{d\theta}{dt}$$

$$\frac{d\theta}{dt} = \frac{\frac{dr}{dt}(1+0.2\cos(\theta))}{0.2r\sin(\theta)}.$$

To evaluate this at  $\theta = \pi/3$ , we need dr/dt there, which is -20;  $\sin(\theta)$  which is  $\sqrt{3}/2 \approx 0.866$ ;  $\cos(\theta)$  which is 0.5; and r. The latter is

$$r = \frac{10}{1 + 0.2\cos(\theta)} = \frac{10}{1 + 0.2 \cdot 0.5} \approx 9.091.$$

Then

$$\frac{d\theta}{dt} \bigg|_{\theta=\pi/3} = \frac{-20(1+0.2\cdot0.5)}{0.2\cdot9.091\cdot0.866}$$
 
$$\approx -13.972 \text{ radians/meter.}$$