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Motivation

My research centers on Markov chain Monte Carlo methods in statistical mechanics. This
includes side work on lattice percolation and self-avoiding walks; my thesis topic is
random spatial permutations.

This model arises in the study of the Bose gas. It is also of intrinsic probabilistic interest.
Theoretical history includes Bose-Einstein, Feynman, Penrose-Onsager, Sütő,
Ueltschi-Betz.

Random permutations arise by symmetrizing the N-boson Hamiltonian with pair
interactions and applying a multi-particle Feynman-Kac formula. System energy is now
expressed in terms of point positions and permutations of positions, where permutations
occur with non-uniform probability.

Interactions between permutations are interpreted as collision probabilities between
Brownian bridges in Feynman time. Brownian bridges are integrated out, resulting in a
model which lends itself readily to simulations without the need for CPU-intensive
path-integral Monte Carlo (PIMC). This permits a new perspective on the venerable
question: how does the critical temperature of Bose-Einstein condensation depend on
inter-particle interaction strength?
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The probability model

State space: ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions.

Point positions: X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ.

Hamiltonian, where T = 1/β and rℓ(π) is the number of ℓ-cycles in π:

H(X, π) =
T

4

N
X

i=1

‖xi − xπ(i)‖
2 +

N
X

ℓ=1

αℓrℓ(π).

• The first term discourages long permutation jumps, moreso for higher T .
• The temperature scale factor T/4, not β/4, is surprising but correct for the

Bose-gas derivation of the Hamiltonian.
• The second term discourages cycles of length ℓ, moreso for higher αℓ. These

interactions are not between points, but rather between permutation jumps.
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The probability model

Fixed point positions (quenched model — includes all simulations done up to the present
on the lattice N = L3):

PX(π) =
1

Y (Λ, X)
e−H(X,π), Y (Λ, X) =

X

σ∈SN

e−H(X,σ).

Varying positions (annealed model — many theoretical results are available):

P (π) =
1

Z(Λ, N)
e−H(X,π), Z(Λ, N) =

1

N !

Z

ΛN

Y (Λ,X) dX.

In either case, we write the expectation of an RV as Eπ[θ(π)] =
P

π∈SN
P (π)θ(π).
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The probability model: intuition

What does a random spatial permutation actually look like? (Recall
H(X, π) = T

4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π).)

• As T → ∞, the probability measure becomes supported only on the identity
permutation. For large but finite T : there are tiny islands of 2-cycles, 3-cycles, etc.

• As T → 0, length-dependent terms go to zero. The probability measure approaches
the uniform distribution on SN : all π’s are equally likely.

For intermediate T , things get more interesting:

• The length of each permutation jump, ‖π(x) − x‖, remains small.
• For T above a critical temperature Tc, all cycles are short: 2-cycles, 3-cycles, etc.

Tc ≈ 6.8, and positive α terms increase Tc.
• Phase transition at Tc: for T < Tc jump lengths remain short but long cycles form.
• Figures: high T , medium but subcritical T , and low T .
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Quantifying the onset of long cycles

We observe the following:

• For T > Tc, E[ℓmax] is constant as N → ∞: cycles remain finite.

• For T < Tc, E[ℓmax] scales with N : there are arbitrarily long cycles, or infinite cycles,
in the infinite-volume limit. Feynman (1953) studied long cycles in the context of
Bose-Einstein condensation for interacting systems. See also Sütő (1993, 2002).

Other random variables (“order parameters”) besides E[ℓmax/N ]:

• Fraction of sites in long cycles, fI , goes to zero in L above Tc, non-zero below.

• Correlation lengths ξ(T ) which are (spatial or hop-count) length of the cycle
containing the origin: for T < Tc, these blow up in L.

• Winding numbers: number of x, y, z wraps around the 3-torus (Λ with p.b.c.).

Scaled winding number:fS = 〈W2〉L2

3βN
. This behaves much like fI , but is easier to

compute with. Also, fW : fraction of sites which participate in winding cycles.

Central goal of my dissertation work: quantify the dependence of Tc on α, where
∆Tc(α) = Tc(α)−Tc(0)

Tc(0)
. Known results and conjectures are formulated quantitatively in

terms of limα→0 ∆Tc(α).
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Behavior of order parameters as functions of L and T (αℓ ≡ 0)
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Known results and conjectures

Recall H(X, π) = T
4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π). We have the following models:

• Non-interacting model: αℓ ≡ 0.

• Two-cycle model: α2 = α and other cycle weights are zero.

• Ewens model: αℓ is constant in ℓ.

• General-cycle model: No restrictions on αℓ.

Known results for the continuum (obtained largely using Fourier methods):

• ∆Tc(α) is known (to first order in α) for two-cycle interactions (Betz and Ueltschi,
CMP 2008) and small cycle weights (Betz and Ueltschi 2008). (This taps into a
long and controversial history in the physics literature: see Baym et al., EJP B 2001,
or Seiringer and Ueltschi, PRB 2009, for surveys.) The critical (ρ, T, α) manifold
relates ρc to Tc.

ρc(α) ≈
X

ℓ≥1

e−αℓ

Z

R3

e−ℓ 4π2β‖k‖2

dk =
1

(4πβ)3/2

X

ℓ≥1

e−αℓℓ−3/2

∆Tc(α) ≈ cρ1/3α, for α ≈ 0.
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Known results and conjectures

Known results (continued):

• 〈ℓmax〉/NfI is constant for T < Tc for αℓ ≡ 0. (That is, the two order parameters
fI and 〈ℓmax〉/N have the same critical exponent.) For uniform-random
permutations (Shepp and Lloyd 1966 solved Golomb 1964), 〈ℓmax〉/N ≈ 0.6243;
unpublished work of Betz and Ueltschi has found 〈ℓmax〉/NfI is that same number
for the non-interacting case αℓ ≡ 0. Intuition: long cycles are “uniformly
distributed” within the zero Fourier mode.

Conjectures:

• 〈ℓmax〉/NfI is constant for T < Tc for all interaction models. Questions: Why
should this be true on the lattice? How does that constant depend on α?

• ξ(T ) is monotone in T : currently unproved either for the continuum or the lattice.

• ρc(α) formula holds not only for small cycle weights (αℓ → 0 faster than 1/ log ℓ).

Open questions:

• To what extent does the ρc(α) formula hold true on the lattice?

• ∆Tc(α) on the lattice should be similar to that on the continuum.

• ∆Tc(α) is theoretically unknown for Ewens interactions (continuum or lattice).
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Numerical/statistical techniques

• Run Markov chain Monte Carlo experiments for various values of L, T , interaction
type, and interaction strength α.

• For each parameter combination, generate N typical permutations π1, . . . , πN from
the stationary distribution. Compute random variables Xi = X(πi).

• Find the sample mean and estimate the variance of the sample mean (error bar).
The correlation of the Xi’s complicates the latter.

• Use finite-size scaling to compensate for finite-size effects: mathematically, we are
interested estimating infinite-volume quantities based on finite-volume numerical
experiments.
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Metropolis sampling

The expectation of a random variable θ (e.g. ℓmax/N , fI , fS , ξ) is

Eπ[θ(π)] =
X

π∈SN

P (π)θ(π).

The number of permutations, N !, grows intractably in N . The expectation is instead
estimated by summing over some number M (104 to 106) typical permutations.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of detailed
balance, autocorrelation, and quantification of variance of samples.

Metropolis step (analogue of single spin-flips for the Ising model): swap permutation
arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles:

As usual, the proposed change is accepted with probability min{1, e−∆H}.
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Metropolis sampling and winding numbers: the GKU algorithm

• Figure part 1: a long cycle on the torus almost meets itself in the x direction.

• Part 2: after a Metropolis step, one cycle winds by +1, and the other by −1.
Metropolis steps create winding cycles only in opposite-direction pairs; total Wx(π)
is still zero.

• Part 3: if we reverse one cycle (zero-energy move), Wx(π) is now 2.

Our current best algorithm (GKU) has two types of sweeps: (1) For each lattice site, do
a Metropolis step as above (Gandolfo, K). (2) For each cycle in the permutation, reverse
the direction of the cycle with probability 1/2 (Ueltschi). This permits winding numbers
of even parity in each of the three axes.

Methods for obtaining winding numbers of all parities: try (so far with mixed success) to
adapt non-local updates (e.g. Swendsen-Wang for Ising) and worm algorithm. There are
problems with low acceptance rate and stopping time for worm closure, respectively.
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Variance of sample mean for correlated time series c(k)

The analysis applies to any stationary Markov chain Xt, t = 0, 1, 2, . . ., with common
mean µXt

, common variance σ2
Xt

, and exponential autocorrelation:

c(k) = Corr(Xt, Xt+k) = exp(−k/τexp) = ηk.

A toy-model Markov process Yt , with fixed mean, fixed variance, and tunable
autocorrelation exponent η ∈ [0, 1), was constructed to test the analysis.
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The memory induced by the autocorrelation results in a larger variance of the sample
mean, which is already visible in the raw time-series data. We seek to quantify this.
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Variance of sample mean for correlated time series: τint

The variance of the sample mean [Berg] is

Var(XN ) = E[(XN − µXt
)2] =

σ2
Xt

N

"

1 + 2

N−1
X

t=1

„

1 −
t

N

«

Corr(X0, Xt)

#

≈
σ2

Xt

N

"

1 + 2

∞
X

t=1

Corr(X0, Xt)

#

.

The bracketed expression is the integrated autocorrelation time τint. Thus

Var(XN ) =
σ2

Xt

N
τint

where σ2
Xt

/N is the true variance of the sample mean only in the IID (η = 0) case.
When the autocorrelation is c(k) = ηk, we have

τint =
1 + η

1 − η
.

MCMC time series for the random-cycle model have η ≈ 0.99 to 0.999: higher for T near
Tc, lower farther away.
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Estimation of ĉ(k) and τint

We estimate c(k) by ĉ(k) in the usual way. The estimator becomes poor for high k; even
below that, it is fractionally underbiased.
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ĉ(k)

c(k)

An estimator τ̂int for τint is found by summing values of ĉ(k) until the sum becomes
approximately flat (first turning point). The fractional underestimation of ĉ(k) carries
over to τ̂int.
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Estimation of the sample mean and its error bar

The true and estimated variance of the sample mean are

Var(XN) =
σ2

Xt

N
τint and u2

N (Xt) =
sN (Xt)

2

N
τ̂int.

The sample mean is unbiased for the true mean. The estimators τ̂int and u2
N (Xt) are

fractionally underbiased, and more widely varying with higher η. Here are results for
M = 100 experiments of N = 10000 samples on the Yt process.
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Estimation of the sample mean and its error bar

As a result, we may now clearly see the error of the error bar and its dependence on the
autocorrelation exponent η.
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Verdict: Compute the error-bar estimator as accurately as possible, keeping in mind that
it is a rough estimator.

I have also shown that batched means, while facilitating IID analysis, improve neither the
bias nor the variance of the error bar: batching N samples into N/B bins of size B
reduces autocorrelation (good) but reduces sample size (bad). The two effects cancel.
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Finite-size scaling

We have an infinite-volume random variable S∞(T ), e.g. any of the order parameters
above. The finite-volume quantity is SL(T ). Define t = (T − Tc)/Tc. Examine, say,
0.99 < t < 1.01.

The correlation length ξ(T ) follows a power law

ξ(T ) ∼ |t|−ν , T → Tc

For the infinite-volume quantity, we expect a power-law behavior

S∞(T ) ∼ tρ, (−t)ρ, or |t|ρ.

Finite-size scaling hypothesis: for T near Tc, SL(T ) and S∞(T ) are related by a universal
function Q which depends only on the ratio L/ξ:

SL(T ) = L−ρ/νQ(L1/νt) ∼ L−ρ/νQ((L/ξ)1/ν).
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Finite-size scaling: parameter estimation and hypothesis testing

Collect MCMC experimental data, with error bars, for a range of L’s, T ’s, and α’s.

Estimation of critical exponents: given an order-parameter plot, vary the trial exponent ρ̂.
Raise the raw data to the 1/ρ̂ power. Find the ρ̂ with least error in linear regression. Do
the same for ν̂.

Crossing method for finding Tc: Once the exponents are known, plot Lρ/νSL(T ) as a
function of T . Since at T = Tc we have t = 0 and

Lρ/νSL(T ) = Q(0),

regardless of L, these curves will cross (approximately, due to sampling variability) at
T = Tc.

Testing of the FSS hypothesis: having estimated ρ, ν, and Tc, plot Lρ/νSL(T ) as a
function of L1/νt. This is a plot of the scaling function Q. If the hypothesis is correct,
the curves for all L should coincide, or collapse.
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Intermediate computational results: ∆Tc

These results are preliminary: no finite-size scaling; L = 40 here. For fixed L, one may
sandwich Tc(L) between the vertical asymptotes of 1/fS and ξ. From such graphs, we
obtain, with points on the lattice,

• ∆Tc(L)/α = 0.0759 ± 15% for the r2 model (vs. 0.088 theoretically for the
continuum), and

• ∆Tc(L)/α = 0.483 ± 10% for the Ewens model (theoretical value is unknown, but
small-cycle-weight prediction for the continuum is 0.66).
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Computational results: GRU quotient 〈ℓmax〉/NfI

The GRU quotient varies with α in the Ewens model, but not in the r2 model. For small
L, it is non-constant for T < Tc; this bias seems to disappear as L → ∞. (Needs a
statistical confidence test.)
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For r2, GRU quotient is ≈ 0.626 regardless of α. For Ewens, averaging at all subcritical
T ’s, we get the following dependence on α. This merits theoretical investigation.
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Future work

Theory:

• Prove monotonicity of ξ(T ) for points on the continuum.

• Find theoretical expectations for the GRU quotient 〈ℓmax〉/NfI , as a function of α,
on the continuum. Empirically, we know that there are negative-α and positive-α
regimes with different α-dependence.

Experiment:

• Apply more careful finite-size scaling to simulation data.

• Conduct simulations with off-lattice quenched positions (Poisson point process).
Lebowitz, Lenci, and Spohn 2000 showed that the point distribution for the Bose
gas is not Poisson. Yet, this is a step away from the lattice and toward the true
point distribution.

• Conduct simulations with varying (annealed) point positions on the continuum. This
samples from the true point distribution. Software efficiency (namely, finding which
points are near to which) requires a hierarchical partitioning of Λ.

• Develop an algorithm to permit odd winding numbers. (Hallway note: I would be
delighted to discuss worm algorithms with a practitioner.)
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Thank you for attending!
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