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Review of spatial random permutations

Review of spatial random permutations

Daniel’s talk last week described the Feynman-Kac representation for the
Bose gas. The Hamiltonian is

H = −
N∑

i=1

∆i +
∑

i<j

U(xi − xj) in L2
sym(ΛN )

Then Tr e−βH is

∑

π

1

N !

∫
dx1 . . . dxN

∫
dW 2β

x1xπ(1)
(w1) . . . dW 2β

xNxπ(N)
(wN )

exp
{
−1

2

∑

i<j

∫ 2β

0
U

(
wi(s) − wj(s)

)
ds

}
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Review of spatial random permutations

Review of spatial random permutations

Write this as

Tr e−βH =
1

N !

∫

ΛN

dx
∑

π

e−H(x, π)

where

e−H(x, π) =
[ N∏

i=1

dW 2β
xixπ(i)

(ωi)
]
exp

{
−1

2

∑

i<j

∫ 2β

0
U

(
wi(s) − wj(s)

)
ds

}
.

After cluster expansion,

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 +
∑

i<j

V (xi, xπ(i), xj , xπ(j)) + higher orders.
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Review of spatial random permutations

Review of spatial random permutations

The interaction between jumps x 7→ y and x′ 7→ y′ is

V (x, y, x′, y′) =

∫ [
1 − e−1

4

∫ 4β

0
U(ω(s))ds

]
dŴ 4β

x−x′,y−y′(ω).

If U is a hard-core potential with radius a (i.e. U(r) = ∞ for r < a and
U(r) = 0 for r ≥ a), then V (·) is the probability that a Brownian bridge
from x − x′ to y − y′ hits the ball of radius a centered at the origin.

Is there a simple expression involving special functions? Apparently not.
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Review of spatial random permutations

Review of spatial random permutations: Three models

We simulate three models for spatial random permutations. The first two
have been completely coded; the third is in progress.

• The non-interacting model (GRU paper):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2.

• The r2 interacting model (U07 paper):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 + αr2(π).

• The interacting model (U07 paper):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 +
∑

i<j

V (xi, xπ(i), xj , xπ(j)).
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Review of spatial random permutations

Review of spatial random permutations: Conceptualization

• The distance-dependent term e
− 1

4β

P

x ‖x−π(x)‖2

makes a permutation
π with a long jump (i.e. π(x) far from x) less probable.

• The e−αr2(π) term discourages permutations with 2-cycles.

• The interacting term discourages permutations with xi close to xj

and π(xi) close to π(xj), regardless of jump lengths ‖xi − π(xi)‖ or
‖xj − π(xj)‖. The permutation is favored even less if the two black
arrows cross (i.e. larger θ as discussed below).

x x′

y y′
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Review of spatial random permutations

Review of spatial random permutations: Context

The critical temperature Tc for Bose-Einstein condensation is a (mostly
unknown) function of scattering length a. Even the sign of the slope of
Tc(a) near zero is contested. It is believed that

Tc(a) − Tc(0)

Tc(0)
= cρ1/da + o(ρ1/3a).

Currently, it is thought that c ≈ 1.3. The Monte Carlo simulations
described here will permit tighter estimation of c.

Tc(0)
Tc(a)

?
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Review of spatial random permutations

Physics literature

1964 Huang: ∆T
Tc

∼ (aρ1/3)3/2 , increases

1971 Fetter & Walecka: ∆T
Tc

decreases

1982 Toyoda: ∆T
Tc

decreases

1992 Stoof:
∆T

Tc
= c aρ1/3 + o(aρ1/3), c > 0

1996 Bijlsma & Stoof: c = 4.66

1997 Grüter, Ceperley, Laloë: c = 0.34

1999 Holzmann, Grüter, Laloë: c = 0.7 ; Holzmann, Krauth: c = 2.3 ;
Baym et. al.: c = 2.9

2000 Reppy et. al.: c = 5.1

2001 Kashurnikov, Prokof’ev, Svistunov: c = 1.29 ;
Arnold, Moore: c = 1.32

2004 Kastening: c = 1.27 ; Nho, Landau: c = 1.32
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Review of spatial random permutations

Review of spatial random permutations: Critical

temperature

At the critical temperature α, φ(α) goes to zero. We define φ(α) to be
the probability that the origin is in an infinite cycle. (Here, α = 1/4β; this
figure is from the GRU paper.) Monte Carlo simulations undertaken in this
project will discover how this graph changes in the presence of interactions.
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The computational project
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The computational project

The computational project

Given a random variable θ(π), compute its expected value. The random
variable of interest for this project is the density of site in cycles of
specified length:

ρmn(π) =
1

V
#

{
i = 1, . . . , N : m 6 ℓi(π) 6 n

}

The usual prescription in probability is

E[ρmn] =
∑

π∈SN

ρmn(π)P (π) =
∑

π∈SN

ρmn(π)
e−H(x,π)

Y
.
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The computational project

The computational project

The computational burden splits into three main components:

(1) Finding H, especially its V term. (For Metropolis, ∆H including
∆V .)

(2) Sampling (via Metropolis) from a non-uniform probability distribution
on N ! permutations for N as big as 503.

(3) Visualizing the results.

J. Kerl (Arizona) Monte Carlo methods April 2, 2008 15 / 32



Visualization

Visualization

J. Kerl (Arizona) Monte Carlo methods April 2, 2008 16 / 32



Visualization

Visualization

One of my colleagues says “Don’t make it a mystery novel.” So, I’ll show
you the pictures first. There are two main plots:

(1) Dot plots of the cycles.

(2) E[ρ0,k] as a function of k from 0 to N .

A dot plot of the points {x1, . . . , xN} and a permutation π has a dot for
each point x, along with a line from x to π(x) for each point x.

Key points:

• For infinite β, the permutation weight e
− 1

4β

P

x ‖x−π(x)‖2

becomes
uniform: individual permutation jumps can be arbitrarily long.

• For β = 0, only the identity permutation is possible.

• For moderate β, long jumps are discouraged. Nonetheless, a long
cycle can occur when short jumps chain together.
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Visualization

Visualization: Dot plots, non-interacting case

Here is L = 10, d = 3, point positions uniformly distributed on the cube of
width 10 but not metropolized, no interactions, varying β:
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Visualization

Visualization: E[ρ] plots, non-interacting case

The E[ρ] plots are much as in the GRU paper.

• The horizontal axis is k/N for k from 0 to N .

• In blue on the vertical axis is ρ0,k for the permutation realized on the
last Metropolis sweep.

• In green on the vertical axis is ρk,k for the permutation realized on
the last Metropolis sweep.

• In red on the vertical axis is E[ρ0,k] over 10,000 Metropolis sweeps.

• In yellow on the vertical axis is E[ρk,k].

J. Kerl (Arizona) Monte Carlo methods April 2, 2008 19 / 32



Visualization

Visualization: E[ρ] plots, non-interacting case

Here are E[ρ] plots for the same parameter values as the dot plots:
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Visualization

Visualization: Plots, r2 case

Here we fix β = 0.5 and vary α. Note that α = 0 recovers the
non-interacting case. The dot plots are indistinguishable. The E[ρ0,k]
plots are similar, so they are superimposed. Blue is α = 0, red is α = 5,
and green is α = 20.
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Visualization

Visualization: E[ρ] plots, interacting case

This is recent work — more are to be obtained.

Here is β = 0.15626 (just below non-interacting critical temperature), with
a = 0.0 and a = 0.1:
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Visualization

Comparison

The value φ(β) is the probability that the origin is in an “infinite” cycle. It
may be read off the E[ρ] plots as the distance from the upper left corner
of the ρ plot to the first leftward lean of the red curve. Critical βc has
φ(β) = 0.

β φ0(β) φα=4(β) φa=0.1(β)

0.227273 0.5203 0.5824 0.8081

0.208333 0.4373 0.5114 0.8057

0.192308 0.3703 0.4440 0.7835

0.178571 0.2625 0.3097 0.7868

0.166667 0.1517 0.2148 0.7769

0.161290 0.1133 0.1637 0.7663

0.156250 0.0824 0.1220 0.7693

0.147059 0.0311 0.0351 0.7645

Conclusion: interactions lower critical β. More simulations are needed.
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Computation of V

Computation of V
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Computation of V

Computation of V : Brownian bridges

Write x̂ and ŷ for x − x′ and y − y′ respectively. Simply generate Nb

Brownian bridges from x̂ to ŷ, with Np mesh points per bridge, and see
what fraction of them intersects the ball of radius a centered at the origin.

• Start with a unit-uniform pseudorandom number generator (RNG).

• Use a Box-Muller transform (cf. Numerical Recipes) to get
standard-normal deviates.

• Brownian motion for t from 0 to 1 in steps of ∆t: B0 = 0 and
Bt+1 = Bt + ∆B where ∆B is normal with mean zero and variance
∆t.

• Brownian bridge from x̂ = 0 to ŷ = 0 for t from 0 to 1:
Rt = Bt − tB1.

• Brownian bridge from x̂ to ŷ for t from 0 to T :
√

TRt + x̂+ t
T (ŷ− x̂).
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Computation of V

Computation of V : Brownian bridges

The plot on the left shows, for d = 1, Nb = 20 bridges with Np = 1000
points per bridge, bridged from x = −1 to y = 2 (d = 1) in time T = 1,
with Rt plotted against t.

The plot on the right shows, for d = 3, the trajectory of a single bridge
from x = (−1, 0, 0) to y = (2, 0, 0) in time T = 1, with the first two
components of Rt plotted.
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Computation of V

Computation of V : Brownian bridges

Experimental results are discouraging. Performance requirements are too
stiff for generation of Brownian bridges during Metropolis steps. To help
this, one can (1) compute a database of zero-to-zero Nb Brownian bridges
of Np points each, and re-use this database for different x̂, ŷ. (2) Tabulate
V off-line and interpolate at runtime.

• Dependence on Nb: Increasing Nb decreases sampling variability of V .

• Dependence on Np: For small Np, increasing Nb only decreases
sampling variablity, but non-zero bias remains (vs. the integral and
exact expressions, shown next). For the test case r1 = 1, r2 = 1,
θ = π, one needs Np on the order of 500,000 before V begins to
stabilize.

Interpretation: Note that ∆t = T/Np. Standard deviation of bridge steps
is on the order of

√
T/Np. For smaller Np, bridges are too “hoppy” and

miss the a-ball at the origin.
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Computation of V

Computation of V : Integral expression

Ueltschi and Betz have recently found an approximation which is valid to
low order in a:

V2(x̂, ŷ) =
a√
8πβ

e
+‖x̂−ŷ‖2

8β

∫ 1

0

1

[s(1 − s)]3/2
e
− ‖x̂‖2

8βs e
−

‖ŷ‖2

8β(1−s) ds.

where, for notational convenience, we write

x̂ = x − x′, ŷ = y − y′, V2(x̂, ŷ) = V (x, y, x′, y′).

If ‖x̂‖ = ‖ŷ‖ then we have the exact expression

V2(x̂, ŷ) =
2a

‖x̂‖e
+‖x̂−ŷ‖2

8β e
−‖x̂‖2

2β .

This can be written in terms of the five real variables r1 = ‖x‖, r2 = ‖y‖,
θ = cos−1(〈x, y〉/‖x‖ ‖y‖), β, and a.
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Computation of V

Computation of V : Visualization

Here is a surface plot of V (r, r, θ) for r from 1 to 4, θ from 0 to π, β = 1,
and a = 0.1. Note that probability of intersecting the a-sphere decays as r
increases, and grows as θ runs from 0◦ to 180◦, as expected.
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Conclusions and further directions

Conclusions and further directions
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Conclusions

Conclusions

• The r2 model is easy to simulate. The r2 term raises the critical
temperature. One can quantify this dependence and verify it against
the result of Betz and Ueltschi.

• Preliminary results show that in the full-interaction model, the critical
temperature is also raised. Software optimization is currently in
progress, so that more simulations may be done in a timely manner.
Then, Tc(a) may be plotted with confidence.
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Further directions

Further directions

• The cluster expansion is non-rigorous and needs further justification,
in particular for non-lattice point distributions where inter-particle
spacing can be small.

• Examine random variables other than ρmn.

• Use non-Gaussian weights for d = 2.

• Place the points not on a cubic lattice but distributed according to a
point process; metropolize point positions as well as permutations.
The correct point process for Bose-Einstein condensation is not
known; it is known not to be Poisson.

• We can greatly increase system size by using parallelization: on a
multiprocessor system, partition Λ into subcubes. When x, y are in
the same subcube, computation is local; when x is in one subcube
and y is in a neighbor, use message-passing.

• See what people come up with as Tc(a) becomes better known . . . .
Stay tuned for this as well!
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