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Abstract

These are lecture notes for a talk given to the Mathematical Physics Seminar at the University of

Arizona Department of Mathematics on April 2, 2008.

This is a continuation of last week’s lecture given by Daniel Ueltschi. I sketch Monte Carlo meth-

ods which are used to estimate distribution of cycle length for the non-interacting case, the two-jump-

interaction two-cycle case, and the general two-jump-interaction case.
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2 Review of spatial random permutations

2.1 Hamiltonians for bosons and permutations

As described in [BU] and [U07], the Hamiltonian for N interacting bosons in a domain Λ is

H = −
N∑

i=1

∆i +
∑

i<j

U(xi − xj) in L2
sym(ΛN ).

Then, with inverse temperature β,

Tre−βH =
∑

π

1

N !

∫
dx1 . . . dxN

∫
dW 2β

x1xπ(1)
(w1) . . . dW 2β

xN xπ(N)
(wN )

exp
{
− 1

2

∑

i<j

∫ 2β

0

U
(
wi(s) − wj(s)

)
ds

}

where wi(s) is a Brownian bridge running from xi to xπ(i) in time 2β. Write this as

Tre−βH =
1

N !

∫

ΛN

dx
∑

π

e−H(x,π)

where

e−H(x,π) =
[ N∏

i=1

dW 2β
xixπ(i)

(ωi)
]
exp

{
− 1

2

∑

i<j

∫ 2β

0

U
(
wi(s) − wj(s)

)
ds

}
.

After cluster expansion (a highly non-trivial step, as yet lacking rigrous justification), one obtains

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 +
∑

i<j

V (xi, xπ(i), xj , xπ(j)) + higher orders.

Note that the bosonic Hamiltonian H has been converted to a Hamiltonian H on permutations.

The interaction between jumps x 7→ y and x′ 7→ y′ is

V (x, y, x′, y′) =

∫ [
1 − e−

1
4

R 4β
0

U(ω(s))ds
]
dŴ 4β

x−x′,y−y′(ω).

If U is a hard-core potential with radius a (i.e. U(r) = ∞ for r < a and U(r) = 0 for r ≥ a), then V (·) is
the probability that a Brownian bridge from x − x′ to y − y′ hits the ball of radius a centered at the origin.

Is there a simple expression involving special functions? Apparently not.

2.2 Models

We simulate three models for spatial random permutations. The first two have been completely coded; the
third is in progress.

• The non-interacting model ([GRU]):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2.
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• The r2 interacting model ([U07]):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 + αr2(π).

• The interacting model ([U07]):

H(x, π) =
1

4β

N∑

i=1

|xi − xπ(i)|2 +
∑

i<j

V (xi, xπ(i), xj , xπ(j)).

2.3 Conceptualization

• The distance-dependent term e−
1
4β

P

x ‖x−π(x)‖2

makes a permutation π with a long jump (i.e. π(x) far
from x) less probable.

• The e−αr2(π) term discourages permutations with 2-cycles.

• The interacting term discourages permutations with xi close to xj and π(xi) close to π(xj), regardless
of jump lengths ‖xi − π(xi)‖ or ‖xj − π(xj)‖. The permutation is favored even less if the two black
arrows cross (i.e. larger θ as discussed below).

x x′

y
y′

2.4 Context

The critical temperature Tc for Bose-Einstein condensation is a (mostly unknown) function of scattering
length a. Even the sign of the slope of Tc(a) near zero is contested. It is believed that

Tc(a) − Tc(0)

Tc(0)
= cρ1/da + o(ρ1/3a).

Currently, it is thought that c ≈ 1.3. The Monte Carlo simulations described here will permit tighter
estimation of c.
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Tc(0)

Tc(a)

?

2.5 Physics literature

• 1964: Huang: ∆T
Tc

∼ (aρ1/3)3/2, increases

• 1971: Fetter & Walecka: ∆T
Tc

decreases

• 1982: Toyoda: ∆T
Tc

decreases

• 1992: Stoof :
∆T

Tc
= c aρ1/3 + o(aρ1/3), c > 0

• 1996: Bijlsma & Stoof : c = 4.66

• 1997: Grüter, Ceperley, Laloë: c = 0.34

• 1999: Holzmann, Grüter, Laloë: c = 0.7; Holzmann, Krauth: c = 2.3;

• 1999: Baym et. al.: c = 2.9

• 2000: Reppy et. al.: c = 5.1

• 2001: Kashurnikov, Prokof’ev, Svistunov : c = 1.29

• 2001: Arnold, Moore: c = 1.32

• 2004: Kastening: c = 1.27

• 2004: Nho, Landau: c = 1.32

2.6 Critical temperature

We define φ(α) to be the probability that the origin is in an infinite cycle. (Here, α = 1/4β; this figure is
from [GRU].) At the critical temperature α, φ(α) goes to zero. Monte Carlo simulations undertaken in this
project will discover how this graph changes in the presence of interactions.

7



8



3 The computational project

3.1 Density of sites in infinite cycles

Given a random variable θ(π), compute its expected value. The random variable of interest for this project
is the density of sites in cycles of specified length:

ρmn(π) =
1

V
#

{
i = 1, . . . , N : m ≤ ℓi(π) ≤ n

}

The usual prescription in probability is

E[ρmn] =
∑

π∈SN

ρmn(π)P (π) =
∑

π∈SN

ρmn(π)
e−H(x,π)

Y
.

The computational burden splits into three main components:

(1) Finding H , especially its V term. (For Metropolis, ∆H including ∆V .)

(2) Sampling (via Metropolis) from a non-uniform probability distribution on N ! permutations for N as
big as 503.

(3) Visualizing the results.

3.2 Tools

• Linux environment, although in principle everything should be portable to other operating systems.

• Optimizing compiler: gcc -O3.

• Build tool: make and automatic makefile generation.

• Performance analyzer: gprof. This shows where a program is spending most of its time.

• Error detector: valgrind. Finds many (but not all!) common errors, e.g. malloc without free.

• Code navigation: ctags. Allows a smart editor (vim, emacs) to jump directly to a subroutine body.

• Graphing utility: xgr. Nice plots in these slides were made in Matlab; quick-and-dirty plots without
axis labels were done using xgr.

Sample gprof output:

% cumul. self

time seconds seconds calls name

64.74 1.67 1.67 3729508 pmt_send_x_to_y_n2_delta

10.08 1.93 0.26 13047273 get_distance_squared

7.37 2.12 0.19 3617278 get_Delta_H

5.81 2.27 0.15 3617278 x_to_uniform_y

4.26 2.38 0.11 3617278 metro_step

3.49 2.47 0.09 3617278 pmt_send_x_to_y
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3.10 2.55 0.08 10545 pmt_get_cycle_counts

0.78 2.57 0.02 10000 vector_accumulate

0.39 2.58 0.01 10546 metro_sweep

0.00 2.58 0.00 10545 get_rho_L_pi

...
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4 Visualization

There are three main plots:

(1) Plots of the system energy H .

(2) Dot plots of the cycles.

(3) E[ρ0,k] as a function of k from 0 to N .

4.1 H plots

Here is a plot of system energy H for L = 10, d = 3, no interactions, and β = 1:

This plot is typical for various parameter values; only one such plot is shown here.

• The horizontal axis counts Metropolis sweeps.

• The system was found to be thermalized (as described below) after 559 steps; ρ values were accumulated
over 10,000 sweeps.

• The system energy H is shown in blue.

• In red is H smoothed out over a sliding window of 100 sweeps.

• In green is the same smoothed system energy, multiplied by 0 before thermalization and 1 after. Thus,
the plot “goes green” when thermalization has occurred.

4.2 Dot plots

A dot plot of the points {x1, . . . , xN} and a permutation π has a dot for each point x, along with a line from
x to π(x) for each point x.

Key points:

• For infinite β, the permutation weight e−
1
4β

P

x ‖x−π(x)‖2

becomes uniform: individual permutation
jumps can be arbitrarily long.
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• For β = 0, only the identity permutation is possible.

• For moderate β, long jumps are discouraged. Nonetheless, a long cycle can occur when short jumps
chain together.

4.3 Plots for the non-interacting model

Here is L = 10, d = 3, point positions uniformly distributed on the cube of width 10 but not metropolized,
no interactions, varying β:

The E[ρ] plots are much as in the GRU paper.

• The horizontal axis is k/N for k from 0 to N .

• In blue on the vertical axis is ρ0,k for the permutation realized on the last Metropolis sweep.

• In green on the vertical axis is ρk,k for the permutation realized on the last Metropolis sweep.

• In red on the vertical axis is E[ρ0,k] over 10,000 Metropolis sweeps.

• In yellow on the vertical axis is E[ρk,k].

Here are E[ρ] plots for the same parameter values as the dot plots:
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4.4 Plots for the r2 model

Here we fix β = 0.5 and vary α. Note that α = 0 recovers the non-interacting case. The dot plots are
indistinguishable from the non-interacting case. The E[ρ0,k] plots are similar, so they are superimposed.
Blue is α = 0, red is α = 5, and green is α = 20.
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4.5 Plots for the interacting model

This is recent work — more are to be obtained.

Here is β = 0.15626 (just below non-interacting critical temperature), with a = 0.0 and a = 0.1:

The value φ(β) is the probability that the origin is in an “infinite” cycle. It may be read off the E[ρ] plots
as the distance from the upper left corner of the ρ plot to the first leftward lean of the red curve. Critical
βc has φ(β) = 0.

β φ0(β) φα=4(β) φa=0.1(β)

0.227273 0.5203 0.5824 0.8081
0.208333 0.4373 0.5114 0.8057
0.192308 0.3703 0.4440 0.7835
0.178571 0.2625 0.3097 0.7868
0.166667 0.1517 0.2148 0.7769
0.161290 0.1133 0.1637 0.7663
0.156250 0.0824 0.1220 0.7693
0.147059 0.0311 0.0351 0.7645

Conclusion: interactions lower critical β. More simulations are needed.
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5 Computation of V

5.1 Brownian bridges

Write x̂ and ŷ for x− x′ and y − y′ respectively. Simply generate Nb Brownian bridges from x̂ to ŷ, with Np

mesh points per bridge, and see what fraction of them intersects the ball of radius a centered at the origin.

• Start with a unit-uniform pseudorandom number generator (RNG).

• Use a Box-Muller transform (cf. Numerical Recipes) to get standard-normal deviates.

• Brownian motion for t from 0 to 1 in steps of ∆t: B0 = 0 and Bt+1 = Bt + ∆B where ∆B is normal
with mean zero and variance ∆t.

• Brownian bridge from x̂ = 0 to ŷ = 0 for t from 0 to 1: Rt = Bt − tB1.

• Brownian bridge from x̂ to ŷ for t from 0 to T :
√

TRt + x̂ + t
T (ŷ − x̂).

The plot on the left shows, for d = 1, Nb = 20 bridges with Np = 1000 points per bridge, bridged from
x = −1 to y = 2 (d = 1) in time T = 1, with Rt plotted against t.

The plot on the right shows, for d = 3, the trajectory of a single bridge from x = (−1, 0, 0) to y = (2, 0, 0)
in time T = 1, with the first two components of Rt plotted.

5.2 Software testing

Incrementally test the subroutines for Brownian motion, zero-to-zero bridges, and general bridges.

• Generate Nb bridges of Np points each, for d = 1, 2, 3.

• Select time slices s and t.

• Compute sample means, sample variances, and sample covariances for those time slices and compare
against theoretically expected results.
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Expected results for Brownian motion:

E[Bt] = 0, Var[Bt] = t, Cov[Bs, Bt] = s ∧ t.

Expected results for zero-to-zero Brownian bridge (s < t to simplify notation):

E[Rt] = 0, Var[Rt] = t(1 − t), Cov[Rs, Rt] = s(1 − t).

Expected results for x̂-to-ŷ Brownian bridge (s < t):

E[Rt] = x̂ +
t

T
(ŷ − x̂), Var[Rt] =

t(T − t)

T
, Cov[Rt] =

s(T − t)

T
.

Example with T =, x̂ = (2, 0, 0), ŷ = (−2, 0, 0), Nb = 1000, Np = 1000, s = 0.004 (i.e. index 1 of 1000),
t = 2.0 (i.e. index 500 of 1000):

Actual E[b(s)] = 1.9976 -0.0024 -0.0014

Expected E[b(s)] = 1.9960 -0.0000 0.0000

Difference E[b(s)] = 0.0016 -0.0024 -0.0014

Actual E[b(t)] = 0.0086 0.0542 -0.0208

Expected E[b(t)] = 0.0000 -0.0000 0.0000

Difference E[b(t)] = 0.0086 0.0542 -0.0208

...

Actual Var[b(s)] = 0.0037 0.0040 0.0040

Expected Var[b(s)] = 0.0040 0.0040 0.0040

Difference Var[b(s)] = -0.0003 0.0000 0.0000

Actual Var[b(t)] = 1.0582 0.9712 0.9175

Expected Var[b(t)] = 1.0000 1.0000 1.0000

Difference Var[b(t)] = 0.0582 -0.0288 -0.0825

Actual Cov[b(s),b(t)] = 0.0021 0.0020 0.0027

Expected Cov[b(s),b(t)] = 0.0020 0.0020 0.0020

Difference Cov[b(s),b(t)] = 0.0001 0.0000 0.0007

5.3 Bridge results

Experimental results are discouraging. Performance requirements are too stiff for generation of Brownian
bridges during Metropolis steps. To help this, one can (1) compute a database of zero-to-zero Nb Brownian
bridges of Np points each, and re-use this database for different x̂, ŷ. (2) Tabulate V off-line and interpolate
at runtime.

• Dependence on Nb: Increasing Nb decreases sampling variability of V .
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• Dependence on Np: For small Np, increasing Nb only decreases sampling variablity, but non-zero bias
remains (vs. the integral and exact expressions, shown next). For the test case r1 = 1, r2 = 1, θ = π,
one needs Np on the order of 500,000 before V begins to stabilize.

Interpretation: Note that ∆t = T/Np. Standard deviation of bridge steps is on the order of
√

T/Np. For
smaller Np, bridges are too “hoppy” and miss the a-ball at the origin.

5.4 Integral expression for V

Ueltschi and Betz have recently found an approximation which is valid to low order in a:

V2(x̂, ŷ) =
a√
8πβ

e
+‖x̂−ŷ‖2

8β

∫ 1

0

1

[s(1 − s)]3/2
e−

‖x̂‖2

8βs e−
‖ŷ‖2

8β(1−s) ds.

where, for notational convenience, we write

x̂ = x − x′, ŷ = y − y′, V2(x̂, ŷ) = V (x, y, x′, y′).

If ‖x̂‖ = ‖ŷ‖ then we have the exact expression

V2(x̂, ŷ) =
2a

‖x̂‖e
+‖x̂−ŷ‖2

8β e
−‖x̂‖2

2β .

This can be written in terms of the five real variables r1 = ‖x‖, r2 = ‖y‖, θ = cos−1(〈x, y〉/‖x‖ ‖y‖), β, and
a.

5.5 Argument reduction

The potential V depends on d4 real variables: we have V (x, y, x′, y′) where x, x′, y, y′ ∈ R
d. Since only x−x′

and y − y′ appear in the formula, we can reduce to d2 real variables: we have V2(x̂, ŷ) as above.

Using rotation and translation invariance of V , we can write down V in terms of r1 = ‖x̂‖, r2 = ‖ŷ‖, and
angle θ. Using the Law of Cosines, we have

‖x̂ − ŷ‖2 = r2
1 + r2

2 − 2r1r2 cos(θ).

In particular, when r1 = r2 = r, we have

‖x̂ − ŷ‖2 = 2r2(1 − cos(θ)) = 4r2 sin2(θ/2).

Now V depends only on three real variables. The integral expression is

V2(r1, r2, θ) =
a√
8πβ

e
r2
1+r2

2−2r1r2 cos θ

8β

∫ 1

0

1

[s(1 − s)]3/2
e−

r2
1

8βs e−
r2
2

8β(1−s) ds

and the exact expression, for r1 = r2 = r, is

V2(r, r, θ) =
2a

r
e

−r2(1−sin2(θ/2))
2β .
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5.6 Visualization

Here is a surface plot of V (r, r, θ) for r from 1 to 4, θ from 0 to π, β = 1, and a = 0.1. Note that probability
of intersecting the a-sphere decays as r increases, and grows as θ runs from 0◦ to 180◦, as expected.
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6 Metropolis-Hastings

6.1 Overview

The Metropolis-Hastings algorithm is a special case of Monte Carlo Markov chain (MCMC). It is best
introduced by example: consider the 1D N -point Ising model.

• One has a system with multiple possible configurations. In the Ising model, the configuration space is
Ω = {±1}N , i.e. N particles which may be in either an up (filled) or a down (hollow) state.

• A state is described by ω = (ω1, . . . , ωn). The configuration space Ω has 2N possible configurations.

• The system is endowed with an energy function. For the 1D Ising model, one has

H(ω) =

n∑

i=1

n∑

j=1

Sijωiωj +

n∑

i=1

hiωi.

where the Sij’s are interaction terms (non-interacting, nearest neighbor, mean-field, etc.) and the hi’s
are magnetization terms.

• One picks an initial configuration. Typically, there are three choices: (1) Start with all spins down, i.e.
ω = (−1, . . . ,−1). (2) Start with all spins up, i.e. ω = (+1, . . . , +1). (3) Start with ω selected from a
uniform probability distribution on Ω.

• There is a temperature-related parameter β.

• One selects a site i and decides whether to flip ωi to −ωi.

P (change) = min{1, e−∆H}

• This decision is made using the Metropolis prescription, namely:

– One computes the change in energy ∆H = H(ω′)−H(ω) which would be obtained if ω were sent
to ω

′ by flipping ωi.

– One may compute ∆H by separately computing H(ω′) and H(ω) and subtracting the two. How-
ever, since the only change is at the site i, one may do some ad-hoc algebra to derive an expression
for ∆H which is less computationally expensive.

– One accepts the change with probability

min{1, e−∆H}.

This is called a Metropolis step.

• Looping through all n sites from i = 1 to i = n, performing a Metropolis step at each site i, is called
a Metropolis sweep.
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• If one realizes a random variable θ(π) at each of M sweeps, averaging θ over the M sweeps, one obtains
an approximation θ for the expectation E[θ].

• One should first run L Metropolis sweeps of the system, discarding the realizations of the random
variable X , before running the M sweeps in which data are accumulated. The L sweeps are called the
thermalization phase; the M sweeps are called the accumulation phase.

There is no general method to determine whether the system has thermalized (Kennedy); the underlying
concern is the convergence of the Metropolis probability distribution to the stable distribution of its
implicit Markov chain.

6.2 Metropolis for the random-cycle model

The random-cycle model is metropolized in a manner analogous to the 1D Ising model:

• The state space is SN , the permutations on N elements. It has size N !.

• The energy function is H as described above.

• The initial configuration is found in one of two ways: (1) Start with an identity permutation. (2) Start
with a permutation π selected from a uniform probability distribution on SN .

• There is a temperature-related parameter β.

• The analogue of conditionally flipping one of N Ising spins is the following. One selects two of the N
points x and y and decides whether to send the old permutation π to new permutation π′ via

π :




x π−1(y) u · · ·
↓ ↓ ↓

π(x) y π(u) · · ·



 π′ :




x π−1(y) u · · ·
↓ ↓ ↓
y π(x) π(u) · · ·





where π′(u) = π(u) for all u 6= x, π−1(y).

• The energy change ∆H may be expensively computed by finding H(π′) and H(π) and subtracting the
two, but again, one may do some algebra to take advantage of the fact that most of the terms are
identical. This computation is shown below.

• A single Metropolis step selects a site x uniformly from the lattice. The site y is selected uniformly

from a Metropolis window : consider only sites y within the radius r such that e−
1
4β r2 ≈ e−10, i.e.

r ≈ 6
√

β. (Selecting y uniformly from the entire lattice gives too many rejected Metropolis steps,
harming performance.)

• Looping through all N sites x, performing a Metropolis step at each site i, is a Metropolis sweep.

• The principal random variable of interest is ρmn as described above.

• Thermalization is detected as follows: smooth out H over a sliding window of 100 Metropolis sweeps.
Consider the system thermalized when this smoothed H has reached 30 turning points. Heuristically,
this is overly conservative (which is fine). It is better to run too many thermalization sweeps than too
few.
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6.3 ∆H for the non-interacting model

Recall that

H(π) =
1

4β

∑

u∈Λ

‖u − π(u)‖2.

For an implementation of a Metropolis algorithm, one wishes to compute the change in potential energy
when one sends π to π′ via

π :




x π−1(y) u · · ·
↓ ↓ ↓

π(x) y π(u) · · ·



 π′ :




x π−1(y) u · · ·
↓ ↓ ↓
y π(x) π(u) · · ·





where π′(u) = π(u) for all u 6= x, π−1(y).

We have

Hπ′ − Hπ =
1

4β

∑

u∈Λ

(
‖u − π′(u)‖2 − ‖u − π(u)‖2

)
.

Since π′(u) = π(u) for all u 6= x, π−1(y), we may rewrite this in terms of π only as

∆H =
‖x − y‖2 − ‖x − π(x)‖2 + ‖π−1(y) − π(x)‖2 − ‖π−1(y) − y‖2

4β
.

6.4 ∆H for the r2 model

The distance-dependent term is the same as in the non-interacting case. Additionally, we need to compute
∆r2 = r2(π

′) − r2(π). There are three cases:

(1) x 6= y and x, y are in different cycles;

(2) x 6= y and x, y are in the same cycle;

(3) x = y.

In each case, it is easy to track the change ∆r2, without having to compute r2(π) and r2(π
′).

6.5 ∆H for the interacting model

The distance-dependent term is again the same as in the non-interacting case. Additionally, we need to
compute ∆V . Recall that

V (π) =
∑

u<v

V (u, π(u), v, π(v))

where u, v are lattice sites. When we send π to π′ as above (x 7→ y replaces x 7→ π(x) etc.), we have

Vπ′ − Vπ =
∑

u<v

V (u, π′(u), v, π′(v)) −
∑

u<v

V (u, π(u), v, π(v)).

21



Since π′(u) = π(u) for all u 6= x, π−1(y), and since the interaction potential satisfies the symmetry condition

V (x, y, x′, y′) = V (x′, y′, x, y),

we have simply

∆V =
∑

u6=x,

u6=π−1(y)

(
V (u, π(u), x, y) − V (u, π(u), x, π(x))

)

+
∑

u6=x,

u6=π−1(y)

(
V (u, π(u), π−1(y), π(x)) − V (u, π(u), π−1(y), y)

)

+ V (x, y, π−1(y), π(x)) − V (x, π(x), π−1(y), y).

7 Conclusions and further directions

7.1 Conclusions

• The r2 model is easy to simulate. The r2 term raises the critical temperature. One can quantify this
dependence and verify it against the result of Betz and Ueltschi.

• Preliminary results show that in the full-interaction model, the critical temperature is also raised.
Software optimization is currently in progress, so that more simulations may be done in a timely
manner. Then, Tc(a) may be plotted with confidence.

7.2 Further directions

• The cluster expansion is non-rigorous and needs further justification, in particular for non-lattice point
distributions where inter-particle spacing can be small.

• Examine random variables other than ρmn.

• Use non-Gaussian weights for d = 2.

• Place the points not on a cubic lattice but distributed according to a point process; metropolize point
positions as well as permutations. The correct point process for Bose-Einstein condensation is not
known; it is known not to be Poisson.

• We can greatly increase system size by using parallelization: on a multiprocessor system, partition Λ
into subcubes. When x, y are in the same subcube, computation is local; when x is in one subcube
and y is in a neighbor, use message-passing.

• See what people come up with as Tc(a) becomes better known . . . . Stay tuned for this as well!
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A Various energy functions

Here we tabulate, for handy reference, various energy functions used in [GRU] and [U07].

Permutation energy HΛ(π) =
∑

x∈Λ |x − π(x)|2

Permutation/point probability contribution Q(π, x) = e−α|x−π(x)|2

Permutation probability numerator P ∗
Λ(π) =

∏
x∈Λ Q(π, x)

=
∏

x∈Λ e−α|x−π(x)|2

= e−α
P

x∈Λ |x−π(x)|2

= e−αHΛ(π)

Partition function ZΛ =
∑

π∈BΛ
P ∗

Λ(π)

Permutation probability PΛ(π) =
P∗

Λ(π)
ZΛ

= e−αHΛ(π)

ZΛ

Probability the origin is in a cycle of length k PΛ(ℓ0 = k) =
∑

π∈BΛ:ℓ0=k PΛ(π)
P (ℓ0 = k) = limΛրZd PΛ(ℓ0 = k)

Probability the origin is in an infinite cycle φ(α) = 1 − ∑∞
k=1 P (ℓ0 = k)

Thermodynamic potential fΛ(α) = log(ZΛ)
|Λ|

f(α) = limΛրZd fΛ(α)
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B An overview of the Metropolis-Hastings algorithm

Here we summarize the Metropolis-Hastings algorithm for handy reference, with no attempt to prove cor-
rectness. More thorough discussions of the algorithm may be found in (for example) [GS], [Hua], [Law],
and [Mac].

Metropolis-Hastings is perhaps best introduced by example.

• One has a system with multiple possible configurations. Specifically, one may think of the one-
dimensional Ising model. This is Ω = {±1}n, i.e. n particles which may be in either an up or a down
state. A state is described by

ω = (ω1, . . . , ωn).

Here, the state space Ω has 2n possible configurations.

• The system is endowed with an energy function. For the 1D Ising model, one has

E(ω) =

n∑

i=1

n∑

j=1

Sijωiωj +

n∑

i=1

hiωi.

where the Sij’s are interaction terms and the hi’s are magnetization terms.

• One picks an initial configuration. Typically, there are three choices: (1) Start with all spins down,
i.e. ω = (−1, . . . ,−1). (2) Start with all spins up, i.e. ω = (+1, . . . , +1). (3) Start with ω selected
from a uniform probability distribution on Ω.

• There is a system temperature β.

• One selects a site i and decides whether to flip ωi to −ωi. This decision is made using the Metropolis

prescription, namely:

– One computes the change in energy ∆E = E(ω′)−E(ω) which would be obtained if ω were sent
to ω

′ by flipping ωi.

– One may compute ∆E by separately computing E(ω′) and E(ω) and subtracting the two. How-
ever, since the only change is at the site i, one may do some algebra to derive an expression for
∆E which is less computationally expensive.

– One accepts the change with probability

min{1, e−β∆E}.

This is called a Metropolis step.

• Looping through all n sites from i = 1 to i = n, performing a Metropolis step at each site i, is called
a Metropolis sweep.

• If one realizes a random variable X(ω) at each of M sweeps, averaging X over the M sweeps, one
obtains an approximation X for the expectation E[X ].

• One should first run L Metropolis sweeps of the system, discarding the realizations of the random
variable X , before running the M sweeps in which data are accumulated. The L sweeps are called
the thermalization phase; the M sweeps are called the accumulation phase. There is no general
method to determine whether the system has thermalized ([Ken]); the underlying concern is the
convergence of the Metropolis probability distribution to the stable distribution of its implicit Markov
chain. Techniques for thermalization for the random-cycle model, which is the subject of this paper,
are presented in section 6.
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[BU] Betz, V. and Ueltschi, D. Spatial random permutations and infinite cycles. arXiv:0711.1188.

[BY] Burdzy, M. and Yor, M. Personal communication.

[GS] Grimmett, G. and Stirzaker, D. Probability and Random Processes, 3rd ed. Oxford, 2001.

[Hua] Huang, K. Introduction to Statistical Physics. CRC Press, 2001.

[Ken] Kennedy, T. Personal communication.

[Law] Lawler, G. Introduction to Stochastic Processes (2nd ed.). Chapman & Hall/CRC, 2006.

[Mac] MacKay, D.J.C. Introduction to Monte Carlo Methods.
http://www.cs.toronto.edu/˜mackay/p0.html#BayesMC.html

[U07] Ueltschi, D. The model of interaction spatial permutations and its relation to the Bose gas.

arXiv:0712.2443v3.

[Yor] Yor, M. Some Aspects of Brownian Motion. Birkhäuser, 1992.
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