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The probability model

State space: ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions.

Point positions: X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ.

Hamiltonian, where T = 1/β and rℓ(π) is the number of ℓ-cycles in π:

H(X, π) =
T

4

N
X

i=1

‖xi − xπ(i)‖
2 +

N
X

ℓ=1

αℓrℓ(π).

• The first term discourages long permutation jumps, moreso for higher T .
• The temperature scale factor T/4, not β/4, is surprising but correct for the

Bose-gas derivation of the Hamiltonian.
• The second term discourages cycles of length ℓ, moreso for higher αℓ. These

interactions are not between points, but rather between permutation jumps.
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The probability model

Fixed point positions (quenched model — includes all simulations done up to the present
on the lattice N = L3):

PX(π) =
1

Y (Λ, X)
e−H(X,π), Y (Λ, X) =

X

σ∈SN

e−H(X,σ).

Varying positions (annealed model — many theoretical results are available):

P (π) =
1

Z(Λ, N)
e−H(X,π), Z(Λ, N) =

1

N !

Z

ΛN

Y (Λ,X) dX.

In either case, we write the expectation of an RV as Eπ[θ(π)] =
P

π∈SN
P (π)θ(π).
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The probability model: intuition

What does a random spatial permutation actually look like? (Recall
H(X, π) = T

4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π).)

• As T → ∞, the probability measure becomes supported only on the identity
permutation. For large but finite T : there are tiny islands of 2-cycles, 3-cycles, etc.

• As T → 0, length-dependent terms go to zero. The probability measure approaches
the uniform distribution on SN : all π’s are equally likely.

For intermediate T , things get more interesting:

• The length of each permutation jump, ‖π(x) − x‖, remains small.
• For T above a critical temperature Tc, all cycles are short: 2-cycles, 3-cycles, etc.

Tc ≈ 6.8, and positive α terms increase Tc.
• Phase transition at Tc: for T < Tc jump lengths remain short but long cycles form.
• Figures: high T , medium but subcritical T , and low T .
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Quantifying the onset of long cycles

We observe the following:

• For T > Tc, E[ℓmax] is constant as N → ∞: cycles remain finite.

• For T < Tc, E[ℓmax] scales with N : there are arbitrarily long cycles, or infinite cycles,
in the infinite-volume limit. Feynman (1953) studied long cycles in the context of
Bose-Einstein condensation for interacting systems. See also Sütő (1993, 2002).

Other random variables (“order parameters”) besides E[ℓmax/N ]:

• Fraction of sites in long cycles, fI , goes to zero in L above Tc, non-zero below.

• Correlation lengths ξ(T ) which are (spatial or hop-count) length of the cycle
containing the origin: for T < Tc, these blow up in L.

• Winding numbers: number of x, y, z wraps around the 3-torus (Λ with p.b.c.).

Scaled winding number:fS = 〈W2〉L2

3βN
. This behaves much like fI , but is easier to

compute with. Also, fW : fraction of sites which participate in winding cycles.

Central goal of my dissertation work: quantify the dependence of Tc on α, where
∆Tc(α) = Tc(α)−Tc(0)

Tc(0)
. Known results and conjectures are formulated quantitatively in

terms of limα→0 ∆Tc(α).
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Behavior of order parameters as functions of L and T (αℓ ≡ 0)
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Known results and conjectures

Recall H(X, π) = T
4

PN
i=1 ‖xi − xπ(i)‖

2 +
PN

ℓ=1 αℓrℓ(π). We have the following models:

• Non-interacting model: αℓ ≡ 0.

• Two-cycle model: α2 = α and other cycle weights are zero.

• Ewens model: αℓ is constant in ℓ.

• General-cycle model: No restrictions on αℓ.

Known results for the continuum (obtained largely using Fourier methods):

• ∆Tc(α) is known (to first order in α) for two-cycle interactions (Betz and Ueltschi,
CMP 2008) and small cycle weights (Betz and Ueltschi 2008). (This taps into a
long and controversial history in the physics literature: see Baym et al., EJP B 2001,
or Seiringer and Ueltschi, PRB 2009, for surveys.) The critical (ρ, T, α) manifold
relates ρc to Tc.

ρc(α) ≈
X

ℓ≥1

e−αℓ

Z

R3

e−ℓ 4π2β‖k‖2

dk =
1

(4πβ)3/2

X

ℓ≥1

e−αℓℓ−3/2

∆Tc(α) ≈ cρ1/3α, for α ≈ 0.
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Known results and conjectures

Known results (continued):

• 〈ℓmax〉/NfI is constant for T < Tc for αℓ ≡ 0. (That is, the two order parameters
fI and 〈ℓmax〉/N have the same critical exponent.) For uniform-random
permutations (Shepp and Lloyd 1966 solved Golomb 1964), 〈ℓmax〉/N ≈ 0.6243;
unpublished work of Betz and Ueltschi has found 〈ℓmax〉/NfI is that same number
for the non-interacting case αℓ ≡ 0. Intuition: long cycles are “uniformly
distributed” within the zero Fourier mode.

Conjectures:

• 〈ℓmax〉/NfI is constant for T < Tc for all interaction models. Questions: Why
should this be true on the lattice? How does that constant depend on α?

• ξ(T ) is monotone in T : currently unproved either for the continuum or the lattice.

• ρc(α) formula holds not only for small cycle weights (αℓ → 0 faster than 1/ log ℓ).

Open questions:

• To what extent does the ρc(α) formula hold true on the lattice?

• ∆Tc(α) on the lattice should be similar to that on the continuum.

• ∆Tc(α) is theoretically unknown for Ewens interactions (continuum or lattice).
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Metropolis sampling

The expectation of a random variable θ (e.g. ℓmax/N , fI , fS , ξ) is

Eπ[θ(π)] =
X

π∈SN

P (π)θ(π).

The number of permutations, N !, grows intractably in N . The expectation is instead
estimated by summing over some number M (104 to 106) typical permutations.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of detailed
balance, autocorrelation, batched means, and quantification of variance of samples.

Metropolis step (analogue of single spin-flips for the Ising model): swap permutation
arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles:

As usual, the proposed change is accepted with probability min{1, e−∆H}.
J. Kerl (Arizona) Numerical methods for random spatial permutations July 30, 2009 9 / 14



Metropolis sampling and winding numbers: the GKU algorithm

• Figure part 1: a long cycle on the torus almost meets itself in the x direction.

• Part 2: after a Metropolis step, one cycle winds by +1, and the other by −1.
Metropolis steps create winding cycles only in opposite-direction pairs; total Wx(π)
is still zero.

• Part 3: if we reverse one cycle (zero-energy move), Wx(π) is now 2.

Our current best algorithm (GKU) has two types of sweeps: (1) For each lattice site, do
a Metropolis step as above (Gandolfo, K). (2) For each cycle in the permutation, reverse
the direction of the cycle with probability 1/2 (Ueltschi). This permits winding numbers
of even parity in each of the three axes.

Methods for obtaining winding numbers of all parities: try (so far with mixed success) to
adapt non-local updates (e.g. Swendsen-Wang for Ising) and worm algorithm. Problems
with low acceptance rate and stopping time for worm closure, respectively.
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Computational results: ∆Tc

These results are preliminary. For fixed L, one may sandwich Tc(L) between the vertical
asymptotes of 1/fS and ξ. From such graphs, we obtain, for L = 40, with points on the
lattice,

• ∆Tc(L)/α = 0.0759 ± 15% for the r2 model (vs. 0.088 theoretically for the
continuum), and

• ∆Tc(L)/α = 0.483 ± 10% for the Ewens model (theoretical value is unknown, but
small-cycle-weight prediction for the continuum is 0.66).
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Computational results: GRU quotient 〈ℓmax〉/NfI

The GRU quotient varies with α in the Ewens model, but not in the r2 model. For small
L, it is non-constant for T < Tc; this bias seems to disappear as L → ∞. (Needs a
statistical confidence test.)
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For r2, GRU quotient is ≈ 0.626 regardless of α. For Ewens, averaging at all subcritical
T ’s, we get the following dependence on α. This merits theoretical investigation.
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Future work

Theory:

• Prove monotonicity of ξ(T ) for points on the continuum.

• Find theoretical expectations for the GRU quotient 〈ℓmax〉/NfI , as a function of α,
on the continuum. Empirically, we know that there are negative-α and positive-α
regimes with different α-dependence.

Experiment:

• Apply more careful finite-size scaling to simulation data. (Hallway note: I would be
delighted to discuss finite-size scaling with a practitioner.)

• Conduct simulations with off-lattice quenched positions (Poisson point process).
Lebowitz, Lenci, and Spohn 2000 showed that the point distribution for the Bose
gas is not Poisson. Yet, this is a step away from the lattice and toward the true
point distribution.

• Conduct simulations with varying (annealed) point positions on the continuum. This
samples from the true point distribution. Software efficiency (namely, finding which
points are near to which) requires a hierarchical partitioning of Λ.

• Develop an algorithm to permit odd winding numbers.
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Vielen Dank für Ihre Aufmerksamkeit!

Thank you for attending!
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