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The probability model

State space: Qa,nv = AN x Sy, where A = [0, L]* with periodic boundary conditions.
Point positions: X = (x1,...,xn) for x1,...,xny € A.
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Hamiltonian, where T'=1/3 and r¢(7) is the number of {-cycles in
& N
) = T Z % — Xy I + Zazm(w)
i=1 =1

e The first term discourages long permutation jumps, moreso for higher T
e The temperature scale factor T'/4, not 3/4, is surprising but correct for the
Bose-gas derivation of the Hamiltonian.
e The second term discourages cycles of length ¢, moreso for higher a. These
interactions are not between points, but rather between permutation jumps.
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The probability model

Fixed point positions (quenched model — includes all simulations done up to the present
on the cubic unit lattice with N = L?):
1 ~H(X,r) —H(X,0)
P == ’ Y(AX) = R
x(m) = gy YAX)= 3 e
ogeSN
Varying positions (annealed model — many theoretical results are available):
1 _H(X,7) 1
P(r) = =———= ’ Z(AN) = — Y (A, X)dX
™= 757 2N = 5 [ oYX

In either case, we write the expectation of an RV S(w) as E[S] =3 s P(m)S(m).

Feynman (1953) studied long cycles in the context of Bose-Einstein condensation for
interacting systems. See also Siité (1993, 2002), and papers of Betz and Ueltschi.
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The probability model: intuition

What does a typical random spatial permutation actually look like? (Recall
N N
H(Xv 7") = % Zi:l Hxl - X7r(i)||2 + Eé:l O‘l”("r)-)
e As T — o0, the probability measure becomes supported only on the identity
permutation. Large but finite T: there are tiny islands of 2-cycles, 3-cycles, etc.
e As T — 0, length-dependent terms go to zero. The probability measure approaches
the uniform distribution on Sy: all 7's are equally likely.
For intermediate T, things get more interesting:

e The length of each permutation jump, ||7(x) — x||, remains small.

e Above a critical temperature T¢, all cycles are short: 2-cycles, 3-cycles, etc.
Te ~ 6.86, and positive « terms increase T¢.

e Phase transition at T¢: below T, jump lengths remain short but long cycles form.
Order-parameter RVs fr, far, fw, fs quantify this; £ is correlation length.

e Figures: high T', medium but subcritical T, and low T'.

.
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Behavior of order parameters as functions of L, T, and «.

fvr = E[lmax]/N is left-sided; 1/¢ is right-sided. All order-parameter plots tend to the
Te(a)—Tc(0)

right as « increases, i.e. ATc(a) = 7o (0)

is positive for small positive a.

Goal: quantify AT,(«)'s first-order dependence on a.

Srar @=0.000

0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005
0.008

70 6.75 6.80 6.85 6.90 6.95 7.00
T

08 1/€, a=0.000
Slfe e L=40 |
O7Mle . [=60
0.6/ +— =80
0.5F
0.4
0.3
0.21
0.1f
039.70 6.75
1/€, 2 =0.004

1.0, T /¢ a‘ T T

oo =40
0.8 =—L=60 i

— L=80
0.6
0.4}
0.2f
Oé} L

.70 6.75 6.80 6.85 6.90 6.95 7.00

T

J. Kerl (Arizona) MCMC methods for random spatial permutations

January 13, 2010

5 /11



Known results and conjectures

Recall H(X,m) =L Eil l1xi — (i) |I? + Zévzl ayre(m). We have the following models:

e Non-interacting model: ay, = 0.

Two-cycle model: a2 = «a and other cycle weights are zero.

Ewens model: «y is constant in £.

e General-cycle model: No restrictions on .
Known results for the continuum (obtained largely using Fourier methods):

e AT.(c) is known (to first order in ) for two-cycle interactions (Betz and Ueltschi,
CMP 2008) and small cycle weights (Betz and Ueltschi 2008). (This taps into a
long and controversial history in the physics literature: see Baym et al., EJP B 2001,
or Seiringer and Ueltschi, PRB 2009, for surveys.) The critical (p, T, o) manifold
relates p. to T..

pe(o) m ) e /

—ear?glk)® o _ 1 —agy—3/2

e dk = ———— e ‘Y

2 7T 2

AT.(a) = cp*Pa, for a ~ 0, with ¢ = 47¢(3/2)"%/*¢**/3 ~ 0.66 when p = 1.
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Metropolis sampling

The expectation of a random variable S (e.g. fw, fu, f1, fs, &) is

E[S]= > P(m)S().
TESN
The number of permutations, N!, grows intractably in N. The expectation is instead
estimated by summing over some number M (10* to 10°) typical permutations. The
sample mean is now a random variable with its own variance.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of detailed
balance, autocorrelation, batched means, and quantification of variance of sample means.

Metropolis step (analogue of single spin-flips for the Ising model): swap permutation
arrows which end at nearest-neighbor lattice sites. This either splits a common cycle, or
merges disjoint cycles:

As usual, the proposed change is accepted with probability min{1, e_AH}.
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Computational results: AT,

Raw MCMC data yield S(L, T, «) plots as above, for each order parameter S.
Finite-size scaling (see Pelissetto and Vicari, arXiv:cond-mat/0012164, for a survey)
determines the critical temperature T¢(c).

Define reduced temperature t = %”(a) and correlation length £ as above.
c(a)

Hypotheses: (1) At infinite volume, S ~ | —¢|? and & ~ [¢t|™" (power-law behavior).
(2) Finite-volume corrections enter only through a universal function Qs of the ratio L/¢:

S(L,T,) = L™/ Qs((L/€)"") = L™/ Qs(L"1)
Method:

e Estimate critical exponents p, v via power-law regression on MCMC data plots.

e Plot L?/?S(L,T, ) as function of T'. Since t = 0 at T.(c), these plots for different
L cross at Tec(a).

e Having estimated p, 7, and T%.(c), plot L?/?S(L, T, ) as function of L/”{. This
causes all curves to collapse, confirming the FSS hypothesis.

e Regress AT.() on « to estimate the constant c.
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Computational results: AT,

Raw data vs. power-law fit for 1/& with a = 0, followed by crossing plot:
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Collapse plot for 1/¢ with o = 0, followed by AT, («) vs. a:
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We find T%.(0) ~ 6.683 + 0.003 and ¢ =~ 0.665 £ 0.067 for Ewens weights on the lattice.
For small cycle weights on the continuum, Betz and Ueltschi have 7¢(0) ~ 6.625 and
¢~ 0.667. Conclusions: (1) Lattice structure modifies the critical temperature; (2) the
a-dependent shift in critical temperature is unaffected.
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Other work

Dissertation items not presented today:

e Precise exposition of the theory of autocorrelation estimators for exponentially
correlated Markov processes. Precise quantification of the advantages and
non-advantages of batched means.

e A worm algorithm permits odd winding numbers and has an elegant theory.
However, it has a stopping-time problem.

e Finite-size scaling details.

e Mean length of longest cycle as a fraction of the number of sites in long cycles
recovers work of Shepp and Lloyd (1966) for non-spatial uniform permutations.

For the future (postdoctoral):

e Use varying (annealed) point positions on the continuum. This samples from the
true point distribution.

e Replace cycle-weight interactions in the Hamiltonian with those derived from the
true Bose-gas model. Analytical as well as simulational work is needed in order to
make this computationally tractable.
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For more information, please visit http://math.arizona.edu/ kerl.

Thank you for attending!
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