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The probability model
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The probability model: definitions

State space: ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions.

Point positions: X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ.

Distance function (short-jump regime with periodic boundary conditions):

‖x − y‖Λ = ‖d‖Λ = min
n∈Z3

‖d + nL‖.

Hamiltonian, where T = 1/β and rℓ(π) is the number of ℓ-cycles in π:

H(X, π) =
T

4

N
X

i=1

‖xi − xπ(i)‖
2
Λ +

N
X

ℓ=1

αℓrℓ(π).

• The first term discourages long permutation jumps, moreso for higher T .

• The temperature scale factor T/4, not β/4, is surprising but correct for the
Bose-gas derivation of the Hamiltonian.

• The second term discourages cycles of length ℓ, moreso for higher αℓ. These
interactions are not between points, but rather between permutation jumps.
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The probability model: definitions

Fixed point positions (quenched model — includes all simulations done up to the present
on the cubic unit lattice with N = L3):

PX(π) =
1

Y (Λ, X)
e−H(X,π), Y (Λ, X) =

X

σ∈SN

e−H(X,σ).

Varying positions (annealed model — many theoretical results are available):

P (π) =
1

Z(Λ, N)
e−H(X,π), Z(Λ, N) =

1

N !

Z

ΛN

Y (Λ,X) dX.

In either case, we write the expectation of an RV S(π) as E[S] =
P

π∈SN
P (π)S(π).

Feynman (1953) studied long cycles in the context of Bose-Einstein condensation for
interacting systems. See also Sütő (1993, 2002), and papers of Betz and Ueltschi.
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The probability model: intuition

What does a typical random spatial permutation actually look like?
(Recall H(X, π) = T

4

PN
i=1 ‖xi − xπ(i)‖

2
Λ +

PN
ℓ=1 αℓrℓ(π).)

• As T → ∞, the probability measure becomes supported only on the identity
permutation. Large but finite T : there are tiny islands of 2-cycles, 3-cycles, etc.

• As T → 0, length-dependent terms go to zero. The probability measure approaches
the uniform distribution on SN : all π’s are equally likely.

For intermediate T , things get more interesting:

• Lengths of each jump, ‖π(x) − x‖Λ, remain small: empirically, < 3.
• Above a critical temperature Tc, all cycles are short: 2-cycles, 3-cycles, etc.

Tc ≈ 6.87, and positive α terms increase Tc.
• Phase transition at Tc: below Tc, jump lengths remain short but long cycles form.

Order-parameter RVs 1/ξ, fI , fM , fW , fS (below) quantify this.

High T , medium but subcritical T , and low T :
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Order parameters and criticality
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Order parameters: 1/ξ, fS , fW , fI , fM

The spatial cycle length and correlation length are

sx(π) =

ℓx(π)
X

j=1

‖πj(x) − πj−1(x)‖Λ and ξ = s(π) =
1

N

X

x∈Λ

sx(π).

The winding number of π counts the integer number of wraps of π’s cycles around the
3-torus in each of the three directions:

W(π) = (Wx(π),Wy(π), Wz(π)) =
1

L

N
X

i=1

‖π(xi) − xi‖Λ

W
2(π) = W(π) · W(π) = Wx(π)2 + Wy(π)2 + Wz(π)2.

The scaled winding number, fS , arises in physics:

fS =
E[W2]TL2

3N
=

E[W2]T

3L
.

The fraction of sites in cycles which wind, fW : self-explanatory.

The fraction of sites in long cycles, fI : defined in the dissertation. Intuition matches the
name.

The scaled mean longest cycle length: fM = E[ℓmax]/N .
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Behavior of order parameters as functions of L, T , and α.

1/ξ is right-sided; the rest are left-sided. All order-parameter plots tend to the right as α

increases, i.e. ∆Tc(α) = Tc(α)−Tc(0)
Tc(0)

is positive for small positive α.

Goal: quantify ∆Tc(α)’s first-order dependence on small α.
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Known results and conjectures

Recall H(X, π) = T
4

PN
i=1 ‖xi −xπ(i)‖

2
Λ +

PN
ℓ=1 αℓrℓ(π). We have the following models:

• Non-interacting model: αℓ ≡ 0.

• Two-cycle model: α2 = α and other cycle weights are zero.

• Ewens model: αℓ is constant in ℓ.

• General-cycle model: No restrictions on αℓ.

Known results for points on the continuum (obtained largely using Fourier methods):

• ∆Tc(α) is known (to first order in α) for two-cycle interactions (Betz and Ueltschi,
CMP 2008) and small cycle weights (Betz and Ueltschi 2008). (This taps into a
long and controversial history in the physics literature: see Baym et al., EJP B 2001,
or Seiringer and Ueltschi, PRB 2009, for surveys.) The critical (ρ, T, α) manifold
relates ρc to Tc.

ρc(α) ≈
X

ℓ≥1

e−αℓ

Z

R3

e−ℓ 4π2β‖k‖2

dk =
1

(4πβ)3/2

X

ℓ≥1

e−αℓℓ−3/2

∆Tc(α) ≈ cρ1/3α, for small α, with c ≈ 2/3 when ρ = 1.
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Markov chain Monte Carlo methods
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Metropolis sampling

The expectation of a random variable S (e.g. fW , fM , fI , fS , ξ) is

E[S] =
X

π∈SN

P (π)S(π).

N ! grows intractably in N . Instead, estimate expectations by summing over some
number M (105 or 106) typical permutations. The sample mean is now a random
variable with its own variance.

The usual technical issues of Markov chain Monte Carlo (MCMC) methods are known
and handled in my simulations and dissertation: thermalization time, proofs of
irreducibility, aperiodicity, and detailed balance (below), autocorrelation, batched means,
and quantification of variance of sample means.

The fundamental Metropolis step (the analogue of single spin-flips for the Ising model)
swaps permutation arrows which end at nearest-neighbor lattice sites. This either splits a
common cycle, or merges disjoint cycles:

As usual, the proposed change is accepted with probability min{1, e−∆H}.
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Correctness for the swap-only (SO) algorithm

Detailed balance, i.e. P (π)M(π, π′) = P (π′)M(π′, π) for all π, π′, is easy to prove using
standard Metropolis M(π, π′) ∼ min{1, e−∆H}. Here we prove irreducibility.

Proposition: Any π′ is reachable from any other π using swaps.
Proof. Transpositions generate SN . We construct a sequence of (nearest-neighbor)
swaps which results in a non-nearest-neighbor swap. We are given π, x, and z. Choose a
nearest-neighbor path y0 = x, y1, . . . , yn−1, yn = z. (See figure.)
Swaps: (y0, y1), (y0,y2), . . . (y0,yn); then (yn,yn−1), (yn,yn−2), . . . (yn,y1).
Then π′(x) = π(z), π′(z) = π(x), and π′(y) = π(y) for all other y. �
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Conclusion: given irreducibility, aperiodicity (also easy), and detailed balance, the Gibbs
distribution is the invariant (and thus limiting) distribution for the SO chain.
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Conservation of winding number (with probability near 1)

Proposition: If jump lengths are less than L/2, swaps conserve winding number.
Proof. Swaps are done on pairs of arrows which end at nearest-neighbor sites. Due to
short jump lengths, all four sites in a swap are in the same Euclidean chart lifted off the
3-torus. Thus

W
′ − W =

1

L

N
X

i=1

d̃(π′(xi), π(xi)) =
1

L

h

d̃(π′(x), π(x)) + d̃(π′(y), π(y))
i

=
1

L

ˆ

π′(x) − π(x) + π′(y) − π(y)
˜

=
1

L
[π(y) − π(x) + π(x) − π(y)] = 0.

�

x1x1 x2x2 x3x3 x4x4

x5x5 x6x6 x7x7 x8x8

Common Euclidean chart
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Partial solution: the swap-and-reverse (SAR) algorithm

Figure part 1: a long cycle on the torus almost meets itself in the x direction.

Part 2: after a swap-only step (above), one cycle winds by +1, and the other by −1.
Metropolis steps in the short-jump-length regime create winding cycles only in
opposite-direction pairs; total Wx(π) is still zero.

Part 3: if we reverse one cycle (zero-energy move), Wx(π) is now 2. This
swap-and-reverse algorithm permits winding numbers of even parity in each of the three
axes: one sweep proposes swaps at each lattice site. A second sweep reverses arrows on
each cycle in the permutation with probability 1/2.

Using SAR, it still takes a jump length ≈ L/2 — which happens effectively never — to
create an odd winding number. Band updates (see dissertation) are one idea; the worm
algorithm (below) is another.
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Finite-size scaling
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Computational results: finite-size scaling method

Raw MCMC data yield S(L, T, α) plots as above, for each order parameter S.
Finite-size scaling (see Pelissetto and Vicari, arXiv:cond-mat/0012164, for a survey)
determines the critical temperature Tc(α).

Define reduced temperature t = T−Tc(α)
Tc(α)

, and correlation length ξ as above.

Hypotheses: (1) At infinite volume, S ∼ | − t|ρ and ξ ∼ |t|−ν (power-law behavior).
(2) Finite-volume corrections enter only through a universal function QS of the ratio L/ξ:

S(L, T, α) = L−ρ/νQS((L/ξ)1/ν) = L−ρ/νQS(L1/νt)

Method:

• Estimate critical exponents ρ, ν via power-law regression on MCMC data plots.

• Plot Lρ̂/ν̂S(L, T, α) as function of T . Since t = 0 at Tc(α), these plots for different
L cross (up to sampling variability) at Tc(α).

• Having estimated ρ̂, ν̂, and T̂c(α), plot Lρ̂/ν̂S(L, T, α) as function of L1/ν̂ t̂. This
causes all curves to collapse, confirming the FSS hypothesis.

• Regress ∆T̂c(α) on α to estimate the constant c.
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Computational results: power-law fit and crossing plots

Raw data vs. power-law fit for 1/ξ and fS with α = 0:
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Plots for 1/ξ, fI , and fM show crossing; plots for fS and fW do not. This is most clear
at L = 30, 40, 50 where I did M = 106 MCMC samples for T near Tc, and most clear in
the power-law-fit point of view:
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Collapse plots and ∆T̂c(α) ≈ ĉα, given ρ̂’s, ν̂, and T̂c(α)
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Omit α = 0.004 since T̂c(α) begins to curve. Omit fS and fW due to non-crossing.
Regressing on the (α, ∆T̂c(α)) data, we find T̂c(0) ≈ 6.873 ± 0.006 and
ĉ ≈ 0.618 ± 0.086 (2 σ error bars) for Ewens weights on the lattice. For small cycle
weights on the continuum, Betz and Ueltschi have Tc(0) ≈ 6.625 and c ≈ 0.667.
Conclusions: (1) Lattice structure modifies the critical temperature; (2) the α-dependent
shift in critical temperature is unaffected.

J. Kerl (Arizona) Critical behavior for random spatial permutations March 22, 2010 19 / 28



The worm algorithm
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The worm algorithm: intuition

Random-cycle model with p.b.c. has multiple energy minima, indexed by winding
numbers. Draw from path-integral Monte Carlo (PIMC) methods in physics. Tunnel
through the energy barriers by opening a cycle, modifying it with swap-type moves at its
tips, and closing it. Central point: this open cycle, or worm, can wander around the
3-torus (too) freely.

Not permutations anymore? In the figure: nothing 7→ x1, x1 7→ x2, x2 7→ x3, x3 7→
nothing. Rename the nothing to something, called the wormhole point, or w. It has no
spatial coordinates and zero distance from any point. We now have π ∈ SN+1, an
extended lattice, and an extended random-cycle model.

Same recipe applies as before: (extended) energy function and Metropolis moves; prove
correctness. Invent any convenient extended energy for open π’s agreeing with the
original energy H for closed π’s (proved next). Sample RVs only on closed π’s.
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The worm algorithm: marginality

Proposition: Let SN →֒ SN+1 by π(w) = w. Let H,H ′ be energy functions on SN and
SN+1 such that for all π ∈ SN , H(π) = H ′(π). Let P, P ′, Z, Z′ be as above. Then for
all π ∈ SN , P ′(π | π ∈ SN) = P (π).
Proof.: Let π ∈ SN . By definition of conditional expectation,

P ′(π | π ∈ SN ) =
P ′(π) 1SN

(π)

P ′(SN)
.

The numerator is Gibbs P for closed permutations, or 0 for open ones:

P ′(π) 1SN
(π) =

1

Z′
e−H′(π) 1SN

(π) =
1

Z′
e−H(π) 1SN

(π)

since H and H ′ agree on closed π’s. The denominator is total probability of closed
permutations:

P ′(SN) =
1

Z′

X

π∈SN

e−H′(π) =
1

Z′

X

π∈SN

e−H(π).

Since π ∈ SN , the ratio is

1
Z′ e

−H(π) 1SN
(π)

1
Z′

P

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)
P

π∈SN
e−H(π)

=
e−H(π) 1SN

(π)

Z
= P (π).

�.
J. Kerl (Arizona) Critical behavior for random spatial permutations March 22, 2010 22 / 28



The worm algorithm: Metropolis moves

Open at x w.p.

Close w.p.

Head swap at x w.p.

Tail swap at x w.p.

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

∼ 1 ∧ e−∆H

π−1(w)π−1(w)

π−1(w)π−1(w)

x

x

x

x

xx

π(x)

π(x)

π(x)

π(x)

π(x)π(x)

w w

ww

ww

ww

π(w) π(w)

π(w)π(w)
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The worm algorithm: fibration and correctness

Key to proving correctness: fibration of SN+1 over SN .

• N open permutations lie over each closed permutation; fibers partition SN+1.
• Opens and closes stay within fibers.
• Head swaps and tail swaps move across fibers, and furthermore are transitive on

fibers.
• Any SO swap can be constructed by an open, a head swap, and a close. (Hence

irreducibility via SO, opens, and closes. Aperiodicity and detailed balance: also easy.)
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The worm algorithm: stopping time

Good news: examination of random-variable plots for L = 10, comparing SAR to worm,
shows that similar results are produced — other than, of course, the winding-number
histogram itself.

Problem: The the open worm tips wander around randomly within the L box, and fail to
reconnect as L increases. Specifically, histograms show that the distribution of the
wormspan ‖π(w) − π−1(w)‖ peaks around L/2.

SAR and worm CPU times are both ∼ aN + bN2. (Shown: L = 5 to 12.) SAR’s b is
tiny; worm’s b is not. Interesting L (40-80 or so) are out of reach for the worm algorithm.
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Other work

J. Kerl (Arizona) Critical behavior for random spatial permutations March 22, 2010 26 / 28



Other work

Dissertation items not presented today:

• Precise exposition of the theory of autocorrelation estimators for exponentially
correlated Markov processes. Precise quantification of the advantages and
non-advantages of batched means.

• Mean length of longest cycle as a fraction of the number of sites in long cycles
recovers work of Shepp and Lloyd (1966) for non-spatial uniform permutations.

For the future:

• Use varying (annealed) point positions on the continuum. This samples from the
true point distribution.

• Replace cycle-weight interactions in the Hamiltonian with those derived from the
true Bose-gas model. Analytical as well as simulational work is needed in order to
make this computationally tractable.
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Thank you for attending!
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