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Chapter 9

Algorithms for single MCMC runs

Chapters 5, 7, and 8 describe the swap-only, swap-and-reverse, band-update, and
worm algorithms. The content there focuses on algorithm steps and algorithm cor-
rectness, without reference to a specific programming language or a specific software
implementation. This chapter, by contrast, focuses on particular software-design
choices which were made by the author.

The software program (mcrcm) which does a single MCMC run is written in the
C language. Execution of multiple MCMC runs, including parallel processing, is
done using a scripting language such as Bash or Python; this is described in the
next chapter. Throughout this chapter and the next, names of data structures and
subroutines from the program code are written in typewriter font.

The methods here are applicable for any of the algorithms of chapters 5 and 7
— swap-only, swap-and-reverse, and worm — or any other to-be-invented algorithm
which satisfies the hypotheses listed in section 4.5 on recipes for MCMC algorithms.

9.1 Data structures

There is one main data structure, of C type points t, containing points and a cycle

list (see figure 9.1):

• dims contains the lattice dimensions L, L, L. (For 1-dimensional or 2-dimensional
use, not described in this thesis, these would be L, 1, 1 or L, L, 1, respectively.)

• N is the product of the three dimensions. It is used so frequently in the program
code that it is worth computing this product once at the start of the program
and keeping it here.

• lattice: L × L × L array of points (data type point t).

• wormhole: an (N + 1)st point (data type point t) called the wormhole point
(chapter 7). (For the swap-only and swap-and-reverse algorithms, all permuta-
tions send the wormhole point to itself.)

• pcycinfo list head and pcycinfo list tail are the locations of the first and
last cycle-information structure in the doubly linked list of cycle-information
structures.

Each point (point t data type) x contains:
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Lattice points
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Cycle-list head

Cycle-list tail
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Cycle-information structures

ℓ = 3
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pcycinfo

Figure 9.1. Lattice sites and the wormhole point are shown in grey; three lattice
sites participating in a 3-cycle are shown in black. Every point (including the grey
ones for which these arrows are not shown) contains the location (pcycinfo) of a
cycle-information structure which caches the length of the cycle (cyclen); each cycle-
information structure contains the location (psite) of one point in the cycle. Cycle-
information structures are stored in a doubly linked list (pprev and pnext).

• selfi, selfj, selfk: lattice coordinates of each point x, with xi, xj , xk from
0 to L − 1. For the wormhole point, these coordinates are set to an undefined
value.

• pfwd: location of permutation image π(x).

• bfwd: location of permutation preimage π−1(x). This is used for the reason
described in section 5.1. Namely, in a swap, one

– selects a site x,

– follows the forward permutation pointer to find π(x),

– uses the lattice structure to find a site π(y) which is a nearest neighbor of
π(x), and finally

– follows the backward permutation pointer to find y = π−1(π(y)).

• fwd d and fwd dsq: distance ‖π(x) − x‖Λ and squared distance ‖π(x) − x‖2
Λ.

These are cached for performance reasons. It is found empirically that approx-
imately 10-20% of proposed Metropolis changes are accepted. Thus, without
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caching of these distances, most of the time the forward-distance values would
be computed redundantly.

• pcycinfo: location of cycle-information structure (see below).

• mark: this is a single integer stored at each lattice site. When the cycle-
information list is set up (section 9.3) or sanity-checked (section 9.16), it is
necessary to sweep through all lattice sites, following permutation cycles, re-
membering which sites have already been visited. One could allocate a list of
marks (one for each lattice site) at the beginning of these routines, and free
that list at the end. Instead, the marks are stored in the lattice structure so
that this scratch space is available when needed.

Cycle information is stored in a doubly linked list of cycle-information structures
(data type cycinfo t). Each contains:

• psite: Location of one site in the cycle.

• cyclen: Length of the cycle.

• pprev and pnext: Location of the previous and next cycle-information structure
in the doubly linked list.

9.2 Overview

A true outline of the program (routine main in file mcrcm.c) embodies the outline
given in section 4.5. Namely:

• Determine the input parameters L, T , interaction type (non-interacting, r2,
rℓ) and parameter α, algorithm type (swap-only, swap-and-reverse, worm), and
number of sweeps. (These are passed into the program via the command line.)

• Print all control parameters (see section 9.18).

• Initialize (see section 9.3).

• Thermalization phase:

Loop until thermalized:
Do one swap-only, swap-and-reverse, or worm sweep (section 9.4).
See if thermalization is complete (section 9.6).
Optionally sanity-check H and cached cycle information (section 9.16).
Optionally display random-variable instances (section 9.18).



89

• Accumulation phase:

For sweep number from 0 to number of sweeps−1:
Do one swap-only, swap-and-reverse, or worm sweep (section 9.4).
Optionally write π to disk (section 9.17).
Optionally sanity-check H and cached cycle information (section 9.16).
Optionally print realizations of user-specified random variables (section 9.18).
Remember random-variable instances, for statistical use.
Compute statistics of random variables (theorem 4.2.9 and section 4.3).

Display statistics of random variables (section 9.18).

9.3 Initialization

Software initialization consists of four main steps:

• Allocate memory for the lattice points: subroutine get cubic lattice points.
Set the initial permutation to one of the following:

– The identity permutation. (This is the default, set up by the subroutine
get cubic lattice points.)

– A uniform-random permutation on SN , with the wormhole point sent to
itself: subroutine set unif rand pmt.

• Allocate time-series arrays for each random variable: allocate rvs.

• Initialize the cycle-information list: subroutine set up cycinfo list.

• Find the initial system energy H , separated into D and V terms: subroutine
get H of pi. This is a straightforward implementation of equation (2.1.3).

9.4 Metropolis sweeps

The swap-only algorithm uses a swap-only sweep; the swap-and-reverse algorithm uses
a swap-only sweep followed by a cycle-reverse sweep. A swap-only sweep (subroutine
SO sweep) is as follows:

• Loop through lattice sites x = (x, y, z) lexically, i.e. x from 0 to L − 1, y from
0 to L − 1, z from 0 to L − 1.

• For the site x, follow the forward permutation pointer to find π(x).

• Use the lattice structure to select π(y) which is one of the six (i.e. 2d) nearest-
neighbor sites to π(x).

• Follow the backward permutation pointer to find the point y.
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• In subroutine try SO swap, propose and perhaps accept a modification of the
permutation. This is a Metropolis step, described in section 9.5.

(A slight modification of this algorithm would choose x at uniform-random location
on the lattice, N times, rather than looping sequentially through all N lattice sites.)
After a swap-only sweep has been performed, the swap-and-reverse algorithm then
does a reverse sweep (subroutine reverse sweep):

• For each cycle in the permutation (i.e. one follows the doubly-linked list of cycle-
information structures), with probability 1/2 reverse all the arrows in that cycle.
This is done for the reason described in section 5.4, namely, it permits non-zero
(but only even) winding numbers.

• At each point, the forward and backward permutation pointers must be up-
dated, and the cached forward distance and forward squared distance must
be copied from one point to another. The cycle-information structure is not
affected. Also, the system energy is not affected.

A worm sweep (subroutine worm sweep) is done as in section 7.4:

• One attempts to open the permutation at a uniform-random lattice site x.

• If the open is not accepted, the sweep is complete.

• Otherwise, some number of head swaps and/or tail swaps are proposed and
perhaps accepted. Eventually, a close is proposed and accepted. The sweep is
then complete.

Notice that the swap-only and reverse sweeps are of deterministic length: the
former processes all N lattice sites; the latter processes all cycles. (Of course, it takes
more CPU time for an accepted proposal then a rejected proposal. Nonetheless, a
fixed number of proposals is always made.) For the worm sweep, though, the stopping
time is random, depending on the time for the worm head and tail to approach one
another on the lattice. (See section 7.8 for more details.)

9.5 Metropolis steps

See chapter 8, and in particular section 8.3 (∆rℓ), for background information on ∆H
and ∆rℓ. A Metropolis proposal, for a swap as described in section 5.1, is as follows:

• To find ∆D as described in section 8.1: compute ‖x−π(y)‖2
Λ and ‖y−π(x)‖2

Λ.
These will be D terms for the proposed new permutation π′, if it is accepted.
The corresponding D terms for the current permutation π, namely, ‖x−π(x)‖2

Λ

and ‖y − π(y)‖2
Λ, are already cached at the points x and y. Then

∆D =
T

4

(

‖x − π(y)‖Λ|
2 + ‖y − π(x)‖Λ|

2 − ‖x − π(x)‖Λ|
2 − ‖y − π(y)‖Λ|

2
)

.
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• The subroutine get Delta V SO performs the ∆V computations described in
chapter 8. It also computes x ◦–◦y (namely, whether the points x and y are
in the same cycle or not), along with ℓx,y(π) and ℓy,x(π). (If x and y are in
the same cycle, then the cycle lengths are equal; if they are in different cycles,
ℓx,y(π) and ℓy,x(π) are undefined.)

• The total change in system energy for the proposed change is ∆H = ∆D+∆V .

The Metropolis proposal is accepted with probability min{1, exp(−∆H)}. That
is, if a pseudorandom number (section 9.19) uniformly distributed between 0 and 1
is less than exp(−∆H), then π is replaced by π′.

A Metropolis update consists of the following:

• The new system energy H ′ is set to H + ∆H .

• The forward and backward permutation pointers pfwd and pbwd at points x

and y are updated so that π′(x) = π(y) and π′(x) = π(y).

• The cached forward squared distances ‖x − π′(x)‖Λ|
2 and ‖y − π′(y)‖Λ|

2 are
stored in the fwd dsq slots of the point t data structures for points x and y.
Respective square roots are stored in the fwd d slots.

• Cycle-information structures are updated by the subroutine update cycinfo,
which is discussed next.

Without cycle-length caching: Recall from section 8.3 that computing ∆rℓ

requires the following steps:

• See if x and y are in the same cycle.

• If so, find ℓx,y(π) and ℓx,y(π); if not, find ℓx(π) and ℓy(π).

To find these values, one may start at site x, moving forward one permutation
jump at a time. If one reaches y before returning to x, then x and y are in the same
cycle, and ℓx,y(π) has already been found. Continuing to count hops back to x yields
ℓy,x(π). If, on the other hand, one returns to x without having encountered y, then
x and y are in different cycles, and ℓx(π) has already been computed. Counting hops
from y back to itself yields ℓy(π).

Notice that each of these cycle-following steps requires O(ℓ) machine operations
where ℓ is the mean cycle length. For subcritical temperatures T where cycles become
long (of length at most N), these cycle-following steps become unacceptably time-
consuming. Caching of cycle lengths has been found to reduce simulation time, for
L = 40 lattices, by a factor of 15. The improvement is even more pronounced as L is
increased.

With cycle-length caching: Keeping a list of cycles means that the following
Metropolis-proposal steps take O(1) machine operations:
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• To see if x and y are in the same cycle, check the two points’ pcycinfo slots
and see whether they are equal or not.

• The cycle lengths ℓx(π) and ℓy(π) are immediately found by consulting the
cyclen slots of the pcycinfo data structures.

Now, if x and y are in the same cycle, one must additionally find either ℓx,y(π) or
ℓy,x(π). (Note that ℓx,y(π) + ℓy,x(π) = ℓx(π) = ℓy(π) so it suffices to find either one
or the other.) This is, a priori, is of complexity O(ℓ). However, it has been found
empirically that in the MCMC simulations described by this thesis, one of the two
of ℓx,y(π) or ℓy,x(π) is almost always small. That is, a split of a large cycle usually
pinches off a small cycle; rarely is a large cycle split evenly. It is likewise found
empirically that on merges of disjoint cycles, usually one of the two cycles is small.
Thus, if x and y are in the same cycle, it suffices to start at x, searching forward
and backward one jump at a time. If one encounters y on forward jumps, ℓx,y(π) has
been found; if one encounters x on backward jumps, ℓy,x(π) has been found. Thus
the complexity is of order

O(min{ℓx, ℓy}).

A result of this is that all other computations done in our MCMC simulations are
O(N). This bit, however, is necessarily O(N2). Yet, it is O(N2) with a low constant
of proportionality, since one of ℓx and ℓy is almost always small. Plots of CPU time
as a function of N are shown in section 9.21.

It has just been demonstrated that keeping cached cycle lengths makes ∆rℓ com-
putations for a Metropolis proposal quicker. Of course, one pays for this by needing
to maintain cached cycle lengths after Metropolis updates. The following steps are
performed in the subroutine update cycinfo.

If the swap has split a cycle into two (figure 9.2):

• To minimize the number of computations, as described above for Metropolis
proposals, find the shorter new cycle. Suppose x’s new cycle is longer than y’s.
(If not, swap local variables in the subroutine to make this so.)

• All points in y’s new cycle must now point to a new cycle-information structure.
The cycle has been split, so follow from the new π′(y) (which was π(x) before
the merge) around to and including y. As above, the number of sites that must
be visited is min{ℓx(π

′), ℓy(π′)}.

• The cycle-information structures for both split cycles need to have their cycle
lengths updated: ℓx(π

′) = ℓy,x(π) and ℓy(π′) = ℓx,y(π).

• The cycle-information structures for the two cycles need to have their site point-
ers point to x and y, respectively.
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Before split After split, before
cycle-info update
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Figure 9.2. Update of permutation and cycle information on a split swap. Grey
arrows represent pointers between sites and their cycle-information structures; black
arrows represent forward permutation pointers.

Before merge After cycle-info update

ℓ = 5

After merge, before
cycle-info update

x xx

y yy

ℓ = 3ℓ = 3 ℓ = 2ℓ = 2

Figure 9.3. Update of permutation and cycle information on a merge swap. Grey
arrows represent pointers between sites and their cycle-information structures; black
arrows represent forward permutation pointers.
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• The new cycle-information structure for the y cycle must be added to the doubly
linked list of cycle-information structures.

If the swap has merged two cycles into one (figure 9.3):

• To minimize the number of computations, find the shorter old cycle. Suppose
x’s old cycle is longer than y’s. (If not, swap local variables in the subroutine
to make this so.)

• The cycle-information structure for the merged cycle needs to have its cycle
length updated: ℓx(π

′) = ℓx(π) + ℓy(π).

• All points in y’s old cycle must have their cycle-information structures now
point to x’s cycle-information structure. The two cycles have been merged,
though, so follow from the new π′(x) (which was π(y) before the merge) around
to and including y. As above, the number of sites that must be visited is
min{ℓx(π), ℓy(π)}.

• The cycle-information structure for the old y cycle must be removed from the
cycle-information list and freed.

9.6 Thermalization detection

As noted in section 9.2, the initial permutation selected in an MCMC sequence is
atypical: the identity permutation has zero energy, lower than the mean energy for
the stationary distribution, whereas a uniform-random permutation almost always has
energy higher than the mean due to its long jump lengths. (See equation (2.1.3)and
figure 9.4.)

As always in MCMC simulations [Berg, LB], one must run through some num-
ber of Metropolis steps until the system has thermalized, i.e. when the stationary
distribution has been reached. In the MCMC discipline, practitioners use various
techniques. The thermalization-detection algorithm chosen for the work described by
this dissertation counts turning points of smoothed system energy. This algorithm
may be justified using conditional expectation of ∆H , as well as visually.

Recall from chapters 2 and 5.2 that permutations have energies H(π) and H(π′),
probabilities PGibbs(π) = e−H(π)/Z and PGibbs(π

′) = e−H(π′)/Z, and Metropolis tran-
sition probabilities

A(π, π′) = C(1 ∧ e−(H(π′)−H(π))).

The premise is that a permutation π is taken from the stationary distribution if the
subsequent permutation π′ is equally likely to have higher or lower energy. Stated
probabilistically, we say that the expected value of H(π′), conditioned on transitioning
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Figure 9.4. Plot of system energy versus Metropolis sweep number. The transition
from grey to black indicates thermalization was detected, via 40 turning points of
energy smoothed over a sliding window of 200 sweeps.

from π, should be zero. Recall that for a random variable X and an event A, with
outcomes x, we have

E[f(X) | X ∈ A] =

∑

x∈A

P (x)f(x)

∑

x∈A

P (x)
=

∑

x∈A

P (x)f(x)

P (A)
.

Here, this translates to

E[H(π′) | π] =

∑

π′ ◦–◦ π

PGibbs(π
′)H(π′)

∑

π′ ◦–◦ π

PGibbs(π
′)

=

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)H(π′)

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)

=

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)(H(π) + ∆H)

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)

=

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)H(π) +
∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)∆H

∑

π′ ◦–◦ π

PGibbs(π)A(π, π′)
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= H(π) +

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)∆H

∑

π′ ◦–◦π

PGibbs(π)A(π, π′)
.

(Recall from definition 5.2.4 that the sum over π′ ◦–◦π includes all permutations π′, in-
cluding π itself, reachable from an accepted or rejected swap.) For pre-thermalization
π, this expectation should be highly positive (when the initial π1 is the identity), or
highly negative (when the initial π1 is uniform-random). For post-thermalization
π, this expectation should be approximately zero. Alternatively, for various post-
thermalization π, this expectation should be equally likely positive or negative. As
discussed in section 5.2, given π, there are 3N + 1 choices of π′ (including π itself)
which could be reached on a swap. Yet, in the MCMC sequence, only one π′ is chosen.
Thus, this conditional expectation is CPU-intensive to compute, and moreover does
not take advantage of the MCMC sequence itself.

We estimate the above conditional expectation by first defining

HS(t) =
1

S

S−1
∑

i=0

H(πt−i),

where S is the smoothing window size and t denotes a Metropolis sweep counter with
t ≥ S. That is, the system energy at Metropolis sweep t is averaged over the last
S sweeps. The system is deemed to be thermalized when HS(t) has changed sign
sufficiently many times, i.e. when HS(t) has had more than a threshold number of
turning points.

As is typically the case in such matters, rigorously determining the spectral gap
in the Markov transition matrix is computationally intractable. One relies instead
on heuristics which are justified by the practitioner’s experience and all available evi-
dence. Visually examining the plot in figure 9.4, one may decide that thermalization
has occurred by, say, Metropolis sweep 300. Examining a plot for different L, T , and
interaction strength, one might choose a different Metropolis sweep count. I have
examined such plots over a broad range of parameter values; I have chosen S = 200
and threshold number of turning points equal to 40, ensuring that the automated
thermalization detection (when grey turns to black in figure 9.4) agrees with my vi-
sual judgment. Thermalization takes one percent or less of total CPU time, as shown
in the caption of figure 9.5.

9.7 Computation of random variables

All the random variables described in chapter 3 are computed in mcrcm. Details of
each are described in the sections following this one. The software architecture of
mcrcm is such that it is easy to add a newly invented random variable to the code.
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Figure 9.5. Thermalization time as a function of L and T , for α = 0. Plots for
other α are similar. Data accumulation takes 105 or 106 sweeps; thermalization is
here seen to take on the order of 103 sweeps, i.e. a fraction of a percent of CPU time.

9.8 Computation of system energy

The system energy H , with non-interacting terms D and interacting terms V (as
defined in chapter 2), is tracked; one easily scales to obtain the energy per site (or
energy density) h = H/N , d = D/N , and v = V/N .

As described in section 9.3, system energy H is computed for the initial permu-
tation. As described in section 9.4, ∆H (split out into ∆D and ∆V ) is computed for
a proposed new permutation; if the proposal is accepted, H is replaced by H + ∆H .
As described in section 9.16, optional automated checks verify that the accumulated
∆H computations (chapter 8) correctly track the true system energy.

A plot of H as a function of Metropolis sweep, within a single invocation of mcrcm,
is shown in figure 9.4 on page 95. Dependence of H on L, T , and α is shown in figure
9.6. Note that the system energy, as centrally important as it is, does not function
as an order parameter (section 3.7): it exhibits no sharp transition near the critical
temperature.

9.9 Computation of rℓ(π)

Given the cycle-information list as described in sections 9.1 and 9.5, it is trivial to
compute the cycle-length occupation numbers rℓ(π) for ℓ = 1 to N . Namely: Set
r1, . . . , rN = 0. For each cycle in the cycle list, increment rℓ by 1 where ℓ is the length
of the current cycle. Dependence of the sample mean of r2 as a function of L, T , and
α is shown in figure 9.7.
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Figure 9.6. Behavior of system energy H as function of L and T , for α = 0, 0.002.
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Figure 9.7. Behavior of r2 as function of L and T , for α = 0, 0.002.

9.10 Computation of cycle lengths and correlation length

Given the lattice data structure as described in section 9.1, one easily computes the
the spatial cycle lengths sx(π) defined in section 3.2. For each site x in the lattice
Λ, one examines the cached fwd d attribute, which is precisely sx(π). As described
in section 3.2, the correlation length ξ is the spatial cycle length averaged over all N
lattice points. Plots and analysis of the order parameter 1/ξ may be found in chapter
11.

9.11 Computation of mean and maximum jump length

Mean jump length is as defined in section 3.3. The maximum jump length is the
largest jump length encountered at any of the N lattice sites, for any of the M
permutations in the MCMC sequence. This confirms the hypothesis of short jump
lengths as mentioned in section 3.6. See figure 9.8. As discussed in section 3.2, the
jump length is averaged not only over all permutations π generated in the MCMC
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sequence, but moreover is averaged over all N lattice points for each π.
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Figure 9.8. Mean and maximum jump length as function of L and T , for α = 0,
0.002.

9.12 Computation of fI

As discussed in section 3.4, fI is computed using the vertical intercept of a tangent-
line approximation to E[f1,k] as a function of k/N .

Computation of E[f1,k] as a function of k is straightforward: we maintain an array
indexed from 1 to N of counters, all initially set to zero. For each permutation π,
we count the number of sites participating in cycles of length k. This is directly
obtained from the cycle-information structure (see section 9.1). Scaling this array
by 1/N yields a finite-sample approximation to E[fk,k]. Cumulatively summing the
array gives an estimator of E[f1,k]. See figure 9.9.

Given that, the tangent line is found, in the presence of statistical variability,
as follows: subtract off the diagonal line (k/N, k/N) which runs from the lower left
corner to the upper right corner. The peak of the difference (the dashed line in figure
9.9) shows the outermost point of the original E[f1,k] estimator. Then the tangent line
is taken to have slope 1 running through this point. As the number M of permutations
increases, this outermost point adheres closely to the visible diagonal; its location is
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defined by its peers. Thus, we are not computing fI based on a single, noisy data
point, but rather using much of the available E[f1,k] data.
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k/N

0.80

0.85

0.90

0.95

1.00

fI  estimation

<f1,k>M

<f1,k>M	k/N
fit

Figure 9.9. Estimation of fI . The dotted line shows raw 〈f1,k〉M data obtained
by cumulatively summing an array of sample averages of fk,k(π). The dashed line
is the dotted line minus the diagonal (k/N, k/N). The abscissa of the peak of this
difference is the abscissa of the outermost point of the dotted line. The tangent line
is drawn through there, with slope 1. Then fI is one minus the vertical intercept
of that tangent line: in this case, fI = 1 − 0.825 = 0.175. The simulation used an
MCMC run of 104 permutations on L = 20 at T = 6.5.

9.13 Computation of ℓmax, fmax, and macroscopic-cycle quo-

tient

The quantities ℓmax, fmax, fI , and macroscopic-cycle quotient fmax/fI were defined in
sections 3.4 and 3.5. It is easy to compute ℓmax: find the longest cycle in the cycle-
information list (section 9.1). Computation of fI is found as described in section
9.12.

Figure 9.10 makes clear the difference between subcritical and supercritical be-
havior which was alluded to in section 2.3. Below Tc, r1, r2, etc. are smaller than
above Tc, since there is occasionally a long cycle: ℓmax is markedly higher below Tc.
Plots and analysis of the order parameter fmax may be found in chapter 11. The
macroscopic-cycle quotient is analyzed in section 11.8.
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Figure 9.10. Per-realization values of rℓ and ℓmax with L = 20, T = 6.0, 7.0.

9.14 Computation of winding numbers, fS, and fW

The winding-number triple W = (Wx, Wy, Wz) is as defined in section 3.6. Straight-
forward application of equations (3.6.2) and (3.6.3), for W and W2, respectively, are
sufficient as long as the difference vectors dΛ(x,y) are obtained. For these (see also
section 3.1) one first computes the difference x − y. Then, for each of the three co-
ordinate slots, one adds or subtracts multiples of L until the result is between −L/2
and L/2. In figure 9.11 one observes the even parity of winding-number components,
as discussed in section 5.4. As well, the temperature dependence in the histograms
shows the subcritical transition to winding cycles. Plots and analyses of the order
parameters fS and fW may be found in chapter 11.

9.15 Computation of integrated autocorrelation times

Integrated autocorrelation times are estimated precisely as described in sections B.7
through B.10 of appendix B. Error bars in order-parameter plots in this dissertation
are the τint-corrected sample standard deviations of the sample means.
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Figure 9.11. Histograms of Wx for α = 0 and T = 6.70, 6.80, 6.85.

Some estimated integrated autocorrelation times are shown in figure3 9.12. The
key point is that uncertainty increases in the critical region. For this reason, simula-
tions in the critical region were run with 106 Metropolis sweeps for L = 30, 40, 50, and
with 105 sweeps otherwise. Similarly, figure 9.13 shows estimates of the correlation
factors η , in the context of appendix B. Namely, η = 0 yields an IID sequence; η for
MCMC simulations done in this dissertation are typically 0.99 and above, indicating
highly autocorrelated MCMC sequences.
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Figure 9.12. Estimated integrated autocorrelation times of H and ℓmax as functions
of L and T , for α = 0 and 0.002.

9.16 Consistency checks

The following checks are run for every MCMC simulation described in this disserta-
tion:

• Interaction type is one of none, two-cycle interactions, rℓ (Ewens) interactions.
This protects against uninitialized variables.
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Figure 9.13. Estimated autocorrelation factor of H and ℓmax as functions of L and
T , for α = 0 and 0.002.

• Worm move is one of open, close, head swap, or tail swap. Again, this protects
against uninitialized variables.

• L ≥ 1; d = 1, 2, 3.

• The cycle-information list is never empty when a cycle-information structure is
removed (e.g. on a merge).

The following checks are omitted from production runs due to their CPU-time
expense, but were run during code development and testing:

• check H: As described in sections 9.3 and 9.5, the system energy is initially
computed by get H of pi, then updated by ∆H as computed in Metropolis
proposals/updates. If H-checking is enabled (in the header file checks.h),
then after every Metropolis sweep, the system energy is computed by brute
force, and is verified to be within roundoff error of the system energy which has
been tracked by ∆H computations.

• sanity check cycinfo list: This is also enabled in the header file checks.h.
It consists of three checks, which are run after every Metropolis sweep: (1) The
cycle list partitions the lattice sites. All sites are marked unvisited; all cycles in
the cycle-information list are followed, with visits to each site counted; each site
is checked to have been visited no more and no less than once. (2) The cached
cycle lengths are correct: These are verified by following permutation pointers
around each cycle. (3) For each cycle, all points in the cycle are verified to point
to the same cycle-information structure.
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The following visual checks were done for selected single runs:

• H plots, such as figure 9.4 of section 9.6 should show system energy increasing
from 0 up to equilibrium for initial identity; decreasing down to equilibrium for
initial uniform-random.

Visual checks for single runs:

• Output from mcrcm, as shown in section 9.18, looks sane; numbers appear to
be in their normal ranges.

• 〈f1,k〉M plots, as shown in section 9.12, are as usual.

• fW , fmax, and fI are between 0 and 1.

• Sample mean of
∑N

ℓ=1 ℓrℓ is equal to N . (This is k*counts sum in the MCMC
output, as described in section 9.18.)

• Sample mean of energy density h is of order 1.

• Mean jump length is of order 1; maximum jump length is approximately 3-4.

• Winding-number histogram peaks at Wx = 0, with population out to perhaps
±6 depending on system temperature.

• Metropolis acceptance rate is 10 to 20 percent.

Visual checks for runs over parameter values (chapter 10):

• A 30-page file containing all plots of the form shown in this chapter — not
just a representative selection — is used to compare random-variable output to
results from before a software change.

Automated software checking:

• All source code is compiled with gcc -Wall -Werror. This enables all warnings
(e.g. unused variables, reading variables before they are initialized, missing
arguments to printf, and so on), and treats warnings as fatal compilation
errors.

• The open-source valgrind tool finds, at run time, many (but certainly not
all) common programming errors. These include reading or writing off the end
of arrays, continuing to use dynamically allocated memory after it is freed,
dynamically allocated memory which is not freed, and reading of uninitialized
variables.

• The open-source gprof tool tabulates in which subroutines CPU time is being
spent. This helps to identify inefficient programming. See also the gprof output
in section 9.20.
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9.17 Saved realizations

The computer program described up to this point is called mcrcm, since it does Markov
chain Monte Carlo simulations for the random-cycle model. As described in section
9.2, it uses MCMC methods to generate a sequence of permutations, accumulating
sums of various random variables along the way, in order to display statistics of those
random variables at the end.

A key software-optimization insight was offered by Volker Betz. Namely, the
MCMC steps are time-consuming, so one might optionally wish to have mcrcm write
the sequence of realized permutations to a disk file. Then, another program can
simply read those permutations — quicker than they were generated using MCMC
methods — and compute random variables. This is particularly advantageous in
a shoulder-to-shoulder collaboration environment: when one invents a new random
variable to compute, one need not re-realize another sequence of permutations.

The trade-off is that a single realization file can be quite large. Specifically, M
permutations are stored. For each permtuation, 3 bytes are stored for each of N
lattice sites xi: these are the x, y, and z coordinates of π(xi). The realization file
contains a header and a footer of negligible size (a few bytes each). Thus, it totals
3ML3 in size — for example, 240 MB for L = 20 and M = 104, and one would likely
want several such files for different values of L, T , and/or α. One might, of course,
develop more clever storage representations which reduce the necessary file size.

This second program is called rvrcm, since it computes random variables for the
random-cycle model. By default, mcrcm does not store realization files: they oc-
cupy several megabytes for each run, totalling several gigabytes for a run through
a set of parameters (chapter 10). If desired, however, one invokes mcrcm with an
extra command-line argument rzn=myfile.rzn. Later, one invokes simply rvrcm

rzn=myfile.rzn. The .rzn file contains a header with all control parameters which
were initially supplied to mcrcm. The rvrcm program prints the same information as
described in section 9.18.

For example:

mcrcm L=20 T=6.4 rell alpha0=0.2 rzn=experiment.rzn

rvrcm rzn=experiment.rzn

A .rzn file consists of three parts: The header contains all control parameters, e.g.
L, T , interaction type, etc. The footer contains elapsed time spent in mcrcm as well
as Metropolis statistics, i.e. acceptance rate for Metropolis proposals. In between is
a sequence of permutation realizations.

9.18 MCMC output

Outputs from mcrcm fall into two categories: (1) sample statistics of random variables,
which are always printed; (2) per-realization values of specified random variables,
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which are optionally printed.
Each invocation of mcrcm prints information such as the following. For interactive

use, one views these data on-screen, or may send them to a printer. When running
through a set of parameters, typically this output is redirected to a self-descriptive
filename, e.g. L 80 T 6.7 alpha 0.000.txt, as described in chapter 10.

# RNG = Mersenne twister

# L = 80 d = 3 N = 512000

# Boundary conditions: periodic.

# T = 6.7000000 beta = 0.1492537 alpha0 = 0.0000000

# gamma = 0.0500000

# Interactions: constant r_ell.

# Initial permutation: identity.

# Site selection for Metropolis sweeps: sequential.

# Thermalization is detected by 40 turning points of system energy

# smoothed over a 200-point window.

# Terminate after 100000 accumulations:

# * 1 SAR sweep per accumulation.

# * 0 worm sweeps per accumulation.

#

# Initial HDV = 0.0000000 0.0000000 0.0000000

# Sweep 0 HDV = 54809.3500000 54809.3500000 0.0000000

# Thermalization complete: sweep 1778 H = 359840.2499997

# Ntherm = 1778

# Accumulation complete: acc 100000 H = 373669.0499998

#

# rho_infty max dev = 0.9140418 at k = 21976

# fI = 0.0859582

#

# k= 1 <counts> 339457.4268600

# k= 2 <counts> 27347.3173400

# k= 3 <counts> 5740.3265700

# k= 4 <counts> 2631.4549600

# k= 5 <counts> 1342.3165500

# k= 6 <counts> 804.4376700

# k= 7 <counts> 512.2292200

# k= 8 <counts> 351.5231700

# k= 9 <counts> 252.2729800

# k= 10 <counts> 188.1364500

# k*counts sum = 512000.0000000

#

# fM = 0.0537150
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# fM/fI = 0.6248961

#

# mean_H = 371597.3002873

# stddev_H = 1701.6752760

# tauint_H = 481.1931762

# eta_H = 0.9958523

# cssm_H = 118.0419619

#

# mean_D = 371597.3002873

# mean_V = 0.0000000

# mean_h = 0.7257760

# mean_d = 0.7257760

# mean_v = 0.0000000

#

# mean_r2 = 27347.3173400

# stddev_r2 = 172.6096035

# tauint_r2 = 163.4730368

# eta_r2 = 0.9878400

# cssm_r2 = 6.9789168

#

# mean_lmax = 27502.0656900

# stddev_lmax = 8577.6258591

# tauint_lmax = 6.0556505

# eta_lmax = 0.7165392

# cssm_lmax = 66.7494207

#

# mean_jumplenbar = 0.3754422

# stddev_jumplenbar = 0.0015945

# maxjumplen = 3.7416574

#

# mean_ellbar = 1893.6137332

# stddev_ellbar = 821.5275072

# tauint_ellbar = 12.1998395

# eta_ellbar = 0.8484830

# cssm_ellbar = 9.0740082

#

# mean_recipmeanspatlen = 0.0005406

# stddev_recipmeanspatlen = 0.0002356

# tauint_recipmeanspatlen = 38.0712869

# eta_recipmeanspatlen = 0.9488115

# cssm_recipmeanspatlen = 0.0000046
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#

# mean_wno = 20.3278800

# stddev_wno = 16.5433065

#

# mean_fS = 0.5674866

# stddev_fS = 0.4618340

# tauint_fS = 3.5586073

# eta_fS = 0.5612695

# cssm_fS = 0.0027550

# recip_fS = 1.7621560

#

# mean_fW = 0.0810994

# stddev_fW = 0.0082444

# tauint_fW = 155.0150517

# eta_fW = 0.9871807

# cssm_fW = 0.0003246

# recip_fW = 12.3305479

#

# Wx < -10: 1 / 100000 = 0.00001000

# Wx = -10: 14 / 100000 = 0.00014000

# Wx = -9: 0 / 100000 = 0.00000000

# Wx = -8: 233 / 100000 = 0.00233000

# Wx = -7: 0 / 100000 = 0.00000000

# Wx = -6: 2195 / 100000 = 0.02195000

# Wx = -5: 0 / 100000 = 0.00000000

# Wx = -4: 9496 / 100000 = 0.09496000

# Wx = -3: 0 / 100000 = 0.00000000

# Wx = -2: 22900 / 100000 = 0.22900000

# Wx = -1: 0 / 100000 = 0.00000000

# Wx = 0: 30423 / 100000 = 0.30423000

# Wx = 1: 0 / 100000 = 0.00000000

# Wx = 2: 22919 / 100000 = 0.22919000

# Wx = 3: 0 / 100000 = 0.00000000

# Wx = 4: 9341 / 100000 = 0.09341000

# Wx = 5: 0 / 100000 = 0.00000000

# Wx = 6: 2196 / 100000 = 0.02196000

# Wx = 7: 0 / 100000 = 0.00000000

# Wx = 8: 261 / 100000 = 0.00261000

# Wx = 9: 0 / 100000 = 0.00000000

# Wx = 10: 19 / 100000 = 0.00019000

# Wx > 10: 2 / 100000 = 0.00002000
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# Wx_min = -12

# Wx_max = 12

#

# OPENS:

# None.

# CLOSES:

# None.

# HS:

# None.

# TS:

# None.

# GK:

# Metropolis keeps: 44596819174 / 51200000000 ( 87.103%)

# Metropolis changes: 6603180826 / 51200000000 ( 12.897%)

# Elapsed thermalization seconds: 302.841613

# Elapsed accumulation seconds: 136966.313018

# Elapsed total seconds: 137269.154631

In addition to the above sample statistics, per-realization values of specified ran-
dom variables may also be printed. A full list of options may be found by invoking
mcrcm --help. For example, mcrcm hv=1 (i.e. H verbosity is set to 1, rather than
its default value of 0) results in the following output:

# RNG = Mersenne twister

# L = 10 d = 3 N = 1000

... (header information is similar to the previous example)

# Initial HDV = 0.00000 0.00000 0.00000

# Sweep 0 HDV = 132.60000 132.60000 0.00000

0 132.60000 132.60000 0.00000 132.60000 0.00000 # 0 H D V

1 190.40000 190.40000 0.00000 161.50000 0.00000 # 0 H D V

... (many per-realization values omitted for brevity)

597 629.00000 629.00000 0.00000 603.73065 0.00000 # 0 H D V

598 632.40000 632.40000 0.00000 603.73065 0.00000 # 0 H D V

599 642.60000 642.60000 0.00000 603.73065 0.00000 # 0 H D V

# Thermalization complete: sweep 600 H = 642.6000000

600 598.40000 598.40000 0.00000 598.40000 598.40000 # 1 H

601 591.60000 591.60000 0.00000 591.60000 591.60000 # 1 H

602 581.40000 581.40000 0.00000 581.40000 581.40000 # 1 H

... (many per-realization values omitted for brevity)

1597 581.40000 581.40000 0.00000 581.40000 581.40000 # 1 H

1598 578.00000 578.00000 0.00000 578.00000 578.00000 # 1 H

1599 595.00000 595.00000 0.00000 595.00000 595.00000 # 1 H
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# Accumulation complete: acc 1000 H = 372745.0766667

#

# rho_infty max dev = 0.9471790 at k = 27

# fI = 0.0528210

... (statistical output as in the previous example)

# Elapsed thermalization seconds: 0.241671

# Elapsed accumulation seconds: 0.477683

# Elapsed total seconds: 0.719354

Notice that all the sample statistics are printed as before, on lines which start
with a pound sign. In addition, since H verbosity was requested, non-pound-sign
lines show Metropolis sweep number, H , D, V , smoothed H (see section 9.6), and
thermalization flag times smoothed H . With pound-sign lines stripped out or ignored,
a graphing utility can then be used to produce a plot such as that shown in figure 9.4
on page 95.

9.19 Pseudorandom numbers

The default pseudorandom-number generator (“RNG”) is the Mersenne Twister [MN].
One may instead select, at compile time via rcmrand.h, rand48 (of lower quality than
Mersenne twister), Linux /dev/urandom (slower than Mersenne twister), or psdes

from Numerical Recipes [NR].

9.20 Tools

• Linux environment, although: in principle everything other than use of /dev/urandom
should be portable to other operating systems.

• Optimizing compiler with full warnings enabled: gcc -O3 -Wall -Werror.

• Build tool: make and automatic makefile generation.

• Performance analyzer: gprof. This shows where a program is spending most
of its time.

• Error detector: valgrind. Finds many (but not all) common errors, e.g. malloc
without free, or double free.

• Code navigation: ctags. Allows a smart text editor (e.g. vim, emacs) to jump
directly to a subroutine body.

• Graphing utility, used for all plots in this dissertation: pgr, which is the author’s
Python script wrapped around pylab.plot().
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Sample gprof output:

% cumul.self self total

time secs. secs. calls us/call us/call name

32.52 1.20 1.20 1500 0.80 1.41 SO_sweep

25.47 2.14 0.94 21597444 0.00 0.00 get_mtrand_double

9.49 2.49 0.35 1500 0.23 0.51 U_sweep

7.32 2.76 0.27 1000 0.27 0.27 get_pmt_winding_numbers

5.15 2.95 0.19 1000 0.19 0.19 get_mean_cycle_length

4.61 3.12 0.17 12000000 0.00 0.00 get_Delta_V_SO

2.71 3.22 0.10 12000000 0.00 0.00 get_mtrand_int32

2.71 3.32 0.10 1000 0.10 0.10 get_mean_jump_length

2.44 3.41 0.09 12000000 0.00 0.00 find_dxy_dyx_xoy

2.17 3.49 0.08 1000 0.08 0.14 get_rho_L_pi

1.63 3.55 0.06 1000 0.06 0.06 pmt_get_cycle_counts_and_lmax

...

...

0.00 3.69 0.00 1 0.00 0.00 report_metro_stats

0.00 3.69 0.00 1 0.00 0.00 set_default_mcmc_params

0.00 3.69 0.00 1 0.00 0.12 set_up_cycinfo_list

0.00 3.69 0.00 1 0.00 0.00 therm_ctl_free

0.00 3.69 0.00 1 0.00 0.00 therm_ctl_init

What is being seen here:

• The name column shows the names of all subroutines invoked during the execu-
tion of the program.

• The % time column shows the percent of total CPU time spent in a given
subroutine. The output is sorted by decreasing order of CPU time.

• The self-seconds column shows the total wall time spent in the given subrou-
tine; the cumulative-seconds column shows total wall time spent in the given
subroutine and all those listed above it.

• The calls column counts the number of invocations of the subroutine. This
helps the programmer distinguish between a routine which is time-consuming
on each call, and a routine which is quick but perhaps overused.

• The self us/call and total us/call columns displays the mean and total
number of microseconds spent in invocations to the subroutine.
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9.21 Performance

Memory requirements with N = L3 points and M = 105 sweeps, taken from the
VSZ field of a Linux ps aux listing, are shown in table 9.1. A few hundred bytes are
needed for each lattice point; this scales linearly with N . As well, for each random
variable, the full time series over all M permutations in the MCMC sequence is saved.
This scales linearly with M .

Figure 9.14 shows CPU times as a function of L, T , and α. For T near Tc and
L = 30, 40, 50, in order to reduce variance in the critical-slowdown regime, 106 sweeps
were performed. The sawtooth effect is due to the fact that simulations for a few initial
values of T , e.g. T = 6.74, 6.76, were performed in a different computing environment
than later simulations for more values of T including T = 6.75, 6.834, etc.

L 10 20 30 40 50 80 100 200
Megabytes 25 26 29 34 44 103 177 1243

Table 9.1. Memory requirements for mcrcm with M = 105 and varying L.
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Figure 9.14. CPU time in seconds as function of L and T , for α = 0, 0.002.

As was discussed in section 9.5, most computations in our simulations are O(N),
with an O(N2) component that has a small constant of proportionality. See figure
9.15 which substantiates this claim. See also section 7.8 for a comparison of the SAR
algorithm with the worm algorithm.
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Figure 9.15. Scalability of the SAR algorithm. CPU times for 105 sweeps are shown
as a function of N = L3 for L = 30, 40, 50, 60, 70, and 80. SAR time is nearly linear
in N .


