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Chapter 8

∆H computations

When computing ∆H for the swap-only, swap-and-reverse, or worm algorithms, it is
inefficient to find H(π′) and H(π) separately, then compute their difference: swap
and worm moves are local, and most of the energy terms are unchanged from π to π′.
Instead (this is true for Metropolis simulations in general), one discovers a formula
for the energy change in a proposed Metropolis move. Even though these minimal
energy-change formulas are a software-optimization detail, they need to be considered
carefully lest errors intrude.

We write the energy of equation (7.2.3) as

H = D + V + W (8.0.1)

where H is total energy, D is the distance-related single-jump terms, V is the jump-
pair-interaction terms, and W is the worm-dependent terms. (Note that V is identi-
cally zero if there are no interactions, and W is identically zero for the SO, SAR, and
band-update algorithms.)

8.1 Swap and worm with no interactions

Recall that the wormhole point is non-spatial and thus does not participate in distance
computations. As is clear from figures 5.1 and 7.2 (on pages 50 and 68, respectively),
the change in distance-related terms is

∆D = ‖x − π(y)‖2
Λ + ‖y − π(x)‖2

Λ − ‖x − π(x)‖2
Λ − ‖y − π(y)‖2

Λ (swap-only)

∆D = −‖x − π(x)‖2
Λ (worm open)

∆D = ‖π−1(w) − π(w)‖2
Λ (worm close)

∆D = ‖π−1(w) − π(x)‖2
Λ − ‖x − π(x)‖2

Λ (worm head swap)

∆D = ‖x − π(w)‖2
Λ − ‖x − π(x)‖2

Λ (worm tail swap).

8.2 Swap and worm with two-cycle interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle
lengths. Thus, the same ∆r2 formulas apply to both algorithms. The ∆D is the same
as in section 8.1; he we describe only the ∆V .

Recall the definition of a swap from section 5.1. The simplicity of figure 8.1 masks
a bit of detail: namely, the four points may not all be distinct. Thus, there are several
cases. (See figure 8.2.)
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Figure 8.1. A swap.
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Case 7b

Case 8b

Figure 8.2. Cases for ∆r2.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial move; π′ = π.
∆r2 = 0.

• Case 1: x = π(x).

– Case 1a: y = π(y). ∆r2 = +1.

– Case 1b: y 6= π(y) but y = π2(y). ∆r2 = −1.

– Case 1c: y 6= π(y), π2(y). ∆r2 = 0.

• Case 2: y = π(y).

– Case 2a: x = π(x). Same as case 1a. ∆r2 = +1.

– Case 2b: x 6= π(x) but x = π2(x). ∆r2 = −1.

– Case 2c: x 6= π(x), π2(x). ∆r2 = 0.

• Case 3: x = π(y).
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– Case 3a: π(x) = y. ∆r2 = −1.

– Case 3b: π2(x) = y. ∆r2 = +1.

– Case 3c: y 6= π(x), π2(x). ∆r2 = 0.

• Case 4: π(x) = y.

– Case 4a: π(y) = x. Same as case 3a. ∆r2 = −1.

– Case 4b: π2(y) = x. ∆r2 = +1.

– Case 4c: x 6= π(y), π2(y). ∆r2 = 0.

• Case 5: π2(x) = x.

– Case 5a: π2(y) = y. ∆r2 = −2.

– Case 5b: π2(y) 6= y. ∆r2 = −1.

• Case 6: π2(y) = y.

– Case 6a: π2(x) = x. Same as 5a. ∆r2 = −2.

– Case 6b: π2(x) 6= x. ∆r2 = −1.

• Case 7: π2(x) = y.

– Case 7a: π2(y) = x. ∆r2 = +2.

– Case 7b: π2(y) 6= x. ∆r2 = +1.

• Case 8: π2(y) = x.

– Case 8a: π2(x) = y. ∆r2 = +2.

– Case 8b: π2(x) 6= y. ∆r2 = +1.

• All other cases: ∆r2 = 0.

8.3 Swap and worm with rℓ interactions

The non-spatiality of the wormhole point plays no role in the algebraic notion of cycle
lengths. Thus, the same ∆r2 formulas apply to both algorithms.

Recall proposition 5.3.9 and remark 5.3.10: if x and y are in separate cycles
before the swap, they are in the same cycle afterward, and vice versa. In the former
case, the new common cycle length is the sum of the old separate cycle lengths; in
the latter case, the new cycle lengths are taken from the number of permutation
jumps from one site to the other. (Throughout this section, please consult figure 8.3
for illumination.) Given that general pair of facts, we split out subcases which are
convenient as a software-optimization detail:
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Case 1a Case 1b

Case 2a Case 2b

Case 3 Case 4

Figure 8.3. Cases for ∆rℓ. Sites and arrows not participating in changes are shown
in grey.

• Case 0: π(x) = π(y) (and so also x = y): this is a trivial move; π′ = π. ∆rℓ = 0
for all ℓ = 1, . . . , N .

• Case 1: x and y are in different cycles, but one of them is in a one-cycle.

– Case 1a: x = π(x): ∆r1 = −1, ∆rℓy(π) = −1, ∆rℓy(π)+1 = +1.

– Case 1b: y = π(y): ∆r1 = −1, ∆rℓx(π) = −1, ∆rℓx(π)+1 = +1.

• Case 2: x and y are in the same cycle, but one is the jump target of the other.

– Case 2a: y = π(x). ∆rℓx(π) = −1, ∆rℓx(π)−1 = +1, ∆r1 = +1.

– Case 2a: x = π(y). ∆rℓy(π) = −1, ∆rℓy(π)−1 = +1, ∆r1 = +1.

• Case 3: x and y are in the same cycle, and neither is the jump target of
the other. Let a = ℓx,y(π) and b = ℓy,x(π). Then ∆ra+b = −1, ∆ra = +1,
∆rb = +1.

• Case 4: x and y are in separate cycles. ∆rℓx(π) = −1, ∆rℓy(π) = −1, ∆rℓx(π)+ℓy(π) =
+1.

8.4 Swap with V interactions

Recall from proposition 7.3.1 that as long as the extended energy function H ′ agrees
with the energy function H on closed cycles, P ′

Gibbs has the correct marginal distribu-
tion on closed cycles. Thus, when writing energy terms for open cycles, we can choose
how to define the energy. For r2 and rℓ (the previous two sections), it is simplest to
say that the non-spatial point w can participate in permutation cycles. For other
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interactions that depend on the spatiality of points, it is simplest to say that w does
not participate. Thus, here we split out swap and worm cases.

The change in energy is simply the contributions from the old arrows x 7→ π(x)
and y 7→ π(y) to all other arrows, along with their mutual interaction, subtracted
from the contributions from the new arrows x 7→ π(y) and y 7→ π(x) to all other
arrows, along with their mutual interaction:

∆V =
∑

v 6=x,y

V (x, π(y),v, π(v)) +
∑

v 6=x,y

V (y, π(x),v, π(v)) + V (x, π(y),y, π(x))

−
∑

v 6=x,y

V (x, π(x),v, π(v)) −
∑

v 6=x,y

V (y, π(y),v, π(v))− V (x, π(x),y, π(y)).

8.5 Worm with V interactions

The non-spatial point has no interactions, so we simply track the creation and de-
struction of spatial-to-spatial arrows for the four types of worm move. (See figure
8.4.)

Open:

−
∑

v 6=x,w

V (x, π(x),v, π(v)).

Close:

∑

v 6=π−1(w),w

V (π−1(w), π(w),v, π(v)).

Head swap:

∑

v 6=x,π−1(w)

V (π−1(w), π(x),v, π(v))−
∑

v 6=x,π−1(w)

V (x, π(x),v, π(v)).

Tail swap:

∑

v 6=x,w,π−1(w)

V (x, π(w),v, π(v))−
∑

v 6=x,w,π−1(w)

V (x, π(x),v, π(v)).
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x

x

x

x

xx

π(x)

π(x)

π(x)

π(x)

π(x)π(x)

w w

ww

ww

ww

π(w) π(w)

π(w)π(w)

Figure 8.4. Cases for worm ∆V . Non-spatial arrows (i.e. those starting or ending
at w) are shown in grey.


