64

CHAPTER 7

THE WORM ALGORITHM

This chapter, like chapter B, presents a Markov chain for MCMC sampling of the
model of random spatial permutations (chapter) within the framework of chapter
B The worm algorithm solves the problem of winding-number-parity conservation
within the SAR algorithm (section BA4l). However, a stopping time which is poorly
bounded in the lattice size prevents the worm algorithm from being our algorithm of
choice.

7.1 The idea of the worm algorithm

Worm algorithms have been used heavily in path-integral Monte Carlo (PIMC) simu-
lations: see [BPS06L [PSTI8|, I(GCLI7, (KPS, INLO4, [PC87]. The context is that interpar-
ticle interactions are modeled using Brownian bridges in the Feynman-Kac approach.
A naive, pre-PIMC sampling approach involves generating separate Brownian bridges
from point A to point B. The PIMC idea is to generate a single Brownian bridge,
then modify a bit at a time using MCMC methods.

For the random-cycle model with true Bose interactions, the Brownian bridges
implicit in the V' terms of equation (2I]) have been integrated out in equation
EZI3). In fact, this is the key selling point of the random-cycle model in the larger
context of the Bose gas (larger meaning beyond the scope of this dissertation). Most
of the complexity of PIMC simulations, which are an efficient approach to Brownian
bridges, goes away. If one were to adapt a PIMC worm algorithm to the RCM, one
would need to spend significant time learning about PIMC. Yet it is likely that most
of the complexity will also go away. Instead, it is simpler to ask: If one were to have
a worm algorithm for the random-cycle model, what properties would it have? We
require the following:

e We have a lattice with a fixed number N of points. There is no desire to work
in the grand-canonical ensemble.

e We want the ability to open and close permutation cycles. (An open cycle is a
“worm”.)

e Given that, tips of open cycles may wander around the 3-torus before closing,
permitting arbitrary winding numbers.

Thus, we want to sometimes open a cycle, then modify it with SO-like steps, then close
it again. Following PIMC worm algorithms, all our Metropolis steps will involve the

65

worm. This does touch all lattice points: a worm is opened at a site, then modified,
then closed. Then, a worm is opened somewhere else, and so on.

e e e
° / ° D ° \
N \os \ o0
Closed cycle on Open cycle on Open cycle viewed as a
N = 3 points. N = 3 points. permutation on N + 1 = 4 points.

FIGURE 7.1. Open cycles as permutations on N + 1 points.

Question: Can we leverage our knowledge of permutations? To see how, consider
a closed cycle and an open cycle on N = 3 points (see also figure [[l):

1 2 3 1 2 3
2 3 1)° 2 3 1

In the open cycle, 1 — 2, 2 +— 3, 3 — nothing, and nothing — 1. Call that nothing
something — the wormhole point. 1t is an (N + 1)st point, w:

1 2 3 w

2 3 w 1
Henceforth, the wormhole point will be written as w or N + 1. In diagrams, it will
be an open dot while the other N points will be written with filled dots (as in figure

[CT1). Now we have permutations on Syy;. Given m € Sy, inject 7 into Syi1 via
m(w) = w.

Definition 7.1.1. For 7 € Sy, we say 7 is a closed permutation if m(w) = w. We
say 7 is an open permutation if m(w) # w. Likewise, a cycle of 7 is said to be open
or closed, respectively, if it does or does not contain w.

Remark. The PIMC jargon is that closed permutations are in the Z sector (for
partition function), while open permutations are in the G sector (for Matsubara
Green’s function).

The goal is to invent an energy function, Gibbs distribution, and Metropolis algo-
rithm for these extended permutations in Sy;; such that the marginal distribution
on Sy.1, conditioned on closed permutations, matches the RCM Gibbs distribution
(equation (ZIL4])). Then, random variables will be sampled only at closed permuta-
tions.

66

7.2 Extended random-cycle model

Recall that we inject 7 € Sy into Sy via m(w) = w. The (N + 1)st point w is
non-spatial: it has no distance associated with it.

Definition 7.2.1. The extended lattice is
AN = AU{w}

Definition 7.2.2. For m € Sy, define

N N
T
H'(m) =7 DK = Xa I3+ D re(m) + 7 Lsy, sy (7)- (7.2.3)
i=1 (=1
(%) AW

That is, we add 7 to the energy if the permutation is open. Note that this extended
energy agrees with the RCM energy (equation (I.3)) on closed permutations. (The
~ term is only one particular choice; one might develop a better choice.) This is
used to prove the marginality condition below. The extended Gibbs distribution and
extended partition function are defined in the obvious way, as follows.

Definition 7.2.4. Let

, e_H/(W)
Plips (M) = A (7.2.5)

where the partition function is

Z'= Y et (7.2.6)
TESN 41
7.3 Proof of marginality

As long as the energy function for the ERCM and the RCM agree on closed per-
mutations, the following desired marginality condition holds. This means that the
interaction in section 2] — or any other to-be-invented interaction model — may
use the worm algorithm as long as it agrees on closed permutations.

Proposition 7.3.1 (Marginality condition). Let Sy < Syi1 by taking m(w) = w.
Let H, H' be energy functions on Sy and Sn1, respectively, such that for all m € Sy,

H(r) = H'(m). (7.3.2)
Let Pgibbs, Plipns: £, Z' be as above. Then for m € Sy,

Pliips(m | T € Sn) = Paivbs (7). (7.3.3)

67

Proof. Let m € Sy. The left-hand side of equation ([Z33) is, by definition of condi-
tional expectation,

Pc/;ibbs(ﬂ) Lsy (77)
P(/}ibbs (SN)

The numerator is the Gibbs probability for closed permutations, or zero for open
ones:

Plijps(m | ™ € Sy) =

1

i 1
Pin(m) L (1) = ¢~ 1, ()

= ?e—H(ﬂ) lsy (W)

since H and H' agree on closed permutations. The denominator is the total proba-
bility of closed permutations:

1 1 o
PC/}ibbs(SN>:?Z€H():?ZQH().

TeSN TeSN

Since ™ € Sy, the ratio is

R B PN R U P R

% TESN 6_H(7r) ZWESN e_H(W) Z

7.4 The worm algorithm

Now that we have the correct Gibbs distribution for the ERCM, the next step is to
devise a Metropolis algorithm to sample from it. Below, we will prove correctness.
The worm algorithm, within the context of the recipe in section B3, is as follows:

e A sweep begins with a closed permutation .

e The permutation is now closed, so m(w) = w. Select a lattice site x at uniform
random. With probability proportional to 1 A e™* open the permutation by
swapping the arrows of x and w. This is called an open move. (See figure [[2)

e Now that the permutation is open, do a head swap, tail swap, or close.

e Head swap: Pick a lattice site x nearest-neighbor to the lattice site 7~ 1(w).
With probability proportional to 1 A e™*, swap arrows as in figure [The
head swap is trivial if x = 7~ !(w), which happens only if the head swap is
rejected. The head swap would be a close if x = w, but we choose x to be a
lattice site. Thus, the permutation remains open on a head swap.

68

x x

I o0 w Open a’Ewa.p. .\o w

. ~1Ae o—"

7(x) 7(x)

! (w) o 7 (w)
o~ lose w.p. °

Y ~1Ae A l R
7(w) 7(w)

x 7 Hw) x 71 Hw)
I I Head swap at x w.p. . .
T(x) w (%) w

Tail swap at x w.p

(%) w(w

N0<—0

E

Ne<e X

%

FIGURE 7.2. Metropolis moves for the worm algorithm.

e Tail swap: Pick a lattice site m(x) nearest-neighbor to the lattice site 7(w).
With probability proportional to 1 A e™*, swap arrows as in figure 2 The
tail swap is trivial if 7(x) = 7(w), which happens only if the tail swap is rejected.
The tail swap would be a close if 7(x) = w, but we choose 7(x) to be a lattice
site. Thus, the permutation remains open on a tail swap.

e Close: with probability proportional to 1 A e 2 swap arrows as in figure [
The permutation is now closed.

e Once the permutation is closed — after an open, some number of head/tail
swaps, and a close, or after a rejected open — a worm sweep has been completed.
At every sweep, one may obtain a value of any desired random variables for
inclusion in computation of their sample means.

Definition 7.4.1. A head swap at x is trivial if x = 7= }(w); a tail swap at x is

trivial if m(x) = 7w(w).

7.5 Fibration of Sy, over Sy

The definitions and lemmas in this section facilitate explicit construction of the
Markov matrix, and are necessary for proving correctness of the worm algorithm.

69

As suggested by figure [[3], we may separate all of Sy into the closed permutations
Sy and the open permutations Syy; \ Sy. Furthermore, for each of the N! closed
permutations 7, we may open 7 at any of the N sites xq, ..., xy. Collecting each of
the N open permutations obtained from each closed permutation creates a fibration of
Sni1- The key points about the structure of this fibration, formalized by the lemmas
below, are as follows.

e Each open permutation is one opener move away from a base closed permuta-
tion. The N open permutations above a base closed permutation 7 are the fiber
over 7.

e This induces a disjoint partition of the open permutations Sy11 \ Sn-

e Opens and closes, as defined in section [[.4], stay within fibers; non-trivial head
swaps and tail swaps cross fibers.

e For each open permutation, the six non-trivial head swaps and six tail swaps
result in twelve distinct permutations.

e Head swaps and tail swaps are transitive on fibers.

We first define maps corresponding to worm Metropolis moves.

Definition 7.5.1. The four worm Metropolis moves of figure may be viewed in
terms of maps. Throughout, z € A U {w}.
Let O: Sy x A — Sny1 \ Sy send O(w,x) = 7’ such that

'(x) = w,
' (w) = 7(x),
'(z) =7(z), z# x,w.

Let C': Sni1\ Sy — Sy send C(m) = 7’ such that

(7 (w)) = 7(w),

' (w) = w,
/

m'(z)
Let S: Syy1 \ Sy X A — Syi1 \ Sy send S(m,x) = 7" such that

n(z), z# 7 (w),w.

x
!
[

T
7T/(7T_1

7'(z) =

70

.@
Y
-
;
.
)
)

o
'd
/7
<
Z
“t
-
(
~
.

) <)

§>
)

£
o<§o
.&
N

')
®)
)

)

-

O/.
s

||V

G
o

GOO & G GO || || ¢ || d as
. . Q . 9 0

FIGURE 7.3. Fibration of Sy over S3. Closed permutations (i.e. S3) are along the
bottom row; open permutations (i.e. Sy \S3) are above the bottom row. The column,
or fiber, above each closed permutation 7 contains the open permutations obtained
from 7 by an opener move. Arrows modified by opener moves are shown in black.

Let T: Syi1\ Sy x A — Syy1 \ Sy send T'(mw,x) = 7’ such that

~

7 (x) = 7(w),
7' (w) = 7(x),
'(z) =7(z), z# x,w.

Throughout the proofs of the fibration-structure lemmas, we will use the following
fact.

Lemma 7.5.2. Ifx #y, then n(x) # n(y) and 7~ 1(x) # 7~ }(y).

Proof. If x # y and 7m(x) = 7(y), then 7 is not 1-1 which is a contradiction since 7
is a permutation. This applies to 7~! as well, since 77! is also a permutation. O

Now we may prove the fibration-structure lemmas.

71

Lemma 7.5.3. Fach open permutation 7 is one opener move away from a base

closed permutation 7'. That is, for all m € Syi1 \ Sn, there exists ©' € Sy such that
C(r) =7

Proof. Let 7 € Sy41. Since 7 is open, m(w) # w and 77 (w) # w. Let a = 771 (w)
and b = 7(w). Both are lattice points. Applying C, we have C(7) = 7’ where
'(a) = b, 7'(w) = w, and 7'(z) = 7(z) for all remaining lattice points z # a,b.
Since 7'(w) = w, 7’ is closed. O

Definition 7.5.4. For 7 € Sy, C71(7) C Sy41 \ Sy is the fiber of open permuta-
tions over 7.

Lemma 7.5.5. Opens and closes stay within fibers, and each fiber has N elements.

Proof. Closes stay within fibers by definition of fiber. Next, fix 7 € Sy and let
x1,Xy € A. (These are two different ways to open the same closed permutation.) Let

ﬂ-i = O(ﬂ-vxl)v ﬂ-é = O(ﬂ-7x2)'
Then 7} and 7} have
x; — w — 7(x1), Xy — w — T(Xa),
respectively, agreeing with 7 at all other lattice points z. Now, C(7}) and C(7}) have
X1 — m(X1), w — w, Xy — T(Xg), W — W

respectively, agreeing with 7 at all other lattice points z. But this means C(7]) agrees
with C'(7}) agree at all points of A’, so C(7]) = C(n}). Thus, 7] and 7} are in the
same fiber.

For the last claim, fix 7 € Sy and enumerate the N lattice points of A as
X1,...,Xy. We claim that the N permutations

=07, x1),..., 7y = O(7,xn),

which are all now known to be in the same fiber, are all distinct. To see this, fix i # j
from out of {1,2,..., N}. Then 7 and 7} have

X; — w — 7(X;), X; = w — T(X;).
Since x; # x;, by lemma m(x;) # m(x;). Since
mi(w) = m(x;) # 7(x5) = w(w),

m; and 7 send w to different points. Therefore, the permutations 7 and 7 are
distinct. 0

72

Lemma 7.5.6. The above fibration induces a disjoint partition of the open permuta-
tions Sn+1 \ Sn. That is, for my, 7, € Sy,

T #my = C N x)NCHxh) =10 and U C™Hm) = Sni1 \ Sn.

TeSN

Proof. For the first claim, suppose the intersection is non-empty. Let 7 € Sy11 \ Sy
be such that 7 € C~1(7}) and m € C~*(x5). This means C(7) = 7} and C(7) = 7
with 7} # 7}, which is a contradiction since the map C' is uniquely defined for all
TeS N+1 \S N-

For the second claim: there are N! closed permutations. We know from the first
claim that the N! fibers, one above each closed permutation, are all disjoint. From
lemma [[50 we know that each fiber has N elements. We have accounted for all
N - N!'= (N +1)! — N! open permutations, so we must have all of Sy11 \ Sy. O

Lemma 7.5.7. Non-trivial head swaps and tail swaps (definition[7.4.1) cross fibers.

Proof. First consider head swaps. Let m, 7" € Sy41 \ Sy differ by a non-trivial head
swap, namely, there is x # 7! (w) such that 7’ = S(m,x). Then 7 and 7’ have

T x = o7(x) — 73(x), mHw) — w — 7w(w),
7 N w) — 7m(x) = 7(x), X = w — 7(w),
respectively. Now apply C' to each: C'(7) and C(7’) have
C(m) : X — 7(x) — 7T(x), 7 Hw) — w(w), w o= w,
Cr): 7l w) — 7(x) — 7%(x), x — 7(w), w o= w,

respectively. Since x # 7~ }(w), C(w) # C(x').
Next, consider tail swaps. Let m, 7" € Syi1 \ Sy differ by a non-trivial tail swap,
namely, there is 7(x) # m(w) such that 7’ = T'(m,x). Then 7 and 7’ have

T: 7w ix) — x — 7(x), Hw) —» w — 7(w),
o (%) - x — 7(w), lw) — w — 7(x),
respectively. Now apply C' to each: C(w) and C(7’) have
Clr): 7x) — x — 7(x), 7l w) — 7(w), w o w,
C(r): 77l w) — x — =w(w), 7l w) — 7(x), w o w,
respectively. Since 7(x) # w(w), C(7) # C(7). O

Lemma 7.5.8. For each open permutation, the siz non-trivial head swaps and six
non-trivial tail swaps result in twelve distinct permutations.

73

Proof. Fix m € Syy1 \ Sy. Let x1,...,xg be the six nearest-neighbor lattice sites to
the lattice site 77 (w); let y1, . .., ye be the six lattice sites such that 7(y1), ..., 7(ye)
are nearest-neighbor lattices site to the lattice site m(w). (See figure [[2)

First, we show that the six permutations S(m,x1),...,S(m, xg) are distinct. Let
i#jfori,j=1,...,6;let m; = S(m, x;) and m; = S(m,x;). Then 7 has

Toox; — 7w(xg), x; — 7(x;), 7 Hw) — w;

m;, and 7; have
T X, o w, 7 Hw) —
. -1
T X, o w, 7 Hw) — 7(x;),
respectively. Since x; # x;, m; # ;.
Second, we show that the six permutations T'(m,y1), ..., T (7, yes) are distinct. Let
i#jfori,j=1,...,6;let m; =T(m y;) and m; = T'(m,y;). Then 7 has

Tl Y — W(Yi), y;, — W(Yj)a w = 7T(w)§

m;, and 7; have
Ty = m(w), w = 7(yi),
mioy; e m(w), w = w(y;),
respectively. Since y; # y;, by lemma 7(y;) # m(y;). Since m;, 7; send w to to
different sites, m; # ;.
Third, we show that the head-swaps of 7 are distinct from the tail-swaps of .
Fix m € Sy4+1 \ Sy and let 4,5 € {1,...,6}. Then 7 has

rooxoe ont), oy e omly) mlw) — ow e ()
S(m,x;) and T'(m,y;) have

S(myx;): 7 w) — 7w(x;), X, — w +— 7(w);

T(m,y;): Yy, — m(w), Hw) — w — oy
respectively. Under these two permutations, w has images 7(w) and y;, respectively,
and preimages x; and 7~ (w). By definition [ZZ1] the non-trivial head swap S(m,x;)
has x; # 7' (w) and the non-trivial tail swap T'(w,y;) has 7(w) # y;. Thus, S(m,x;)
and T'(m,y;) are distinct permutations. O

7.6 Explicit construction of the Markov matrix

Transition probabilities were described in section [as being proportional to 1Ae~*H
We put the constants of proportionality to be the following:

e ¢ for head swaps and tail swaps;

74

e) for closer moves;

e ¢ for opener moves.

For SO/SAR, we chose the normalizing factor easily. Here, with a more complicated
algorithm, we will choose the normalizing factors to satisfy detailed balance. In
particular, in this section we will obtain ¢ = b= 1/N and a = (1 — b)/12.

The Markov matrix at each Metropolis step is now (N + 1)! x (N + 1)!:

e A closed permutation transitions only to itself, or to any of the N open permu-

tations in the fiber above it. Thus, there are N 4+ 1 non-zero entries in 7’s row
of A'.

e An open permutation transitions to any of the 12 open permutations available
by head-swapping or tail-swapping, or to itself, or to the closed permutation at
the base of its fiber. Thus, there are 14 non-zero entries in 7’s row of A’.

Definition 7.6.1. For open 7, let
{x1,...,x6y ={x e A:||x, 77 (w)|[p =1}
and
{yi,- - yet ={y € At |Im(y), m(w)|[s = 1}.
Then define
RS(W) = {S(ﬂ-7x1)> CR S(ﬂ->x6)}a
RT(W) = {T(?T, y1)7 T 7T(7T7 yﬁ)}

These are the twelve open permutations reachable from 7 via head swaps and tail
swaps, respectively (lemma [C5.]). For closed 7, define

RO(W) = {O(ﬂ-> Xl)a SR O(’]T, XN)}‘
These are the N open permutations reachable from 7 via opener moves.

With these definitions, the entries of the transition matrix are as follows. In
analogy with H, Pgipbs, Z, etc. for the random-cycle model and H', Pl..., Z', etc.
for the extended random-cycle model, we call this worm-algorithm transition matrix
A" to distinguish it from the matrices A and Ay (equations (ZH) and (B22ZH)) for
the swap-only algorithm.

If 7 is closed:

¢ (1 A e‘H(”%H(”)) : 7 € Ro(r);
A/(ﬂ',ﬂ',) — 1-— Z c (1 A 6—H(7r’)+H(7r)> : i T
7w €Ro ()

0, otherwise.

75

If 7 is open:

p

a(1Ae BEHAE) 2l e Ry(n);

a (1A e HEDHHE) nl e Ry(7);
Al(m,7') = b (1 A e_H(W/HH(W)) , 7 =C(n);

1 - t(ﬂ-)u = T,
\0’ otherwise
where
) = ST a(1ae O | g (1 e OO

7" €Rg(m)URy (7)

For row normalization for closed m, note that c(1 A e=*) is between 0 and ¢ so
> rest is between 0 and ¢N. Take

c=1/N. (7.6.2)
Row normalization for open 7 then gives
12a4+b < 1. (7.6.3)

In practice, we set 12a + b = 1. That is, we do the following on open permutations:
with probability 1/N, propose a close; else, propose a head or tail swap with equal
probability (1 —).

The Markov chain for worm Metropolis steps is homogeneous: we use the same
transition matrix A’ at each step. The correctness proofs of the following section
will then imply (by the machinery of chapter H) that we sample from the extended
Gibbs distribution for Sy, 1. Then by proposition [[31 we will sample from the Gibbs
distribution for Sy whenever the permutation closes.

7.7 Correctness

As discussed in sections LN and B3, we need to prove irreducibility, aperiodicity, and
detailed balance for the worm Markov chain.

Proposition 7.7.1 (Irreducibility). The worm algorithm’s Markov chain is irre-
ducible.

Proof. This follows immediately from propositions B30 and 72 namely, the
worm’s chain is irreducibility if the SO’s chain is, and moreover the SO’s chain is
irreducible. O

76

Proposition 7.7.2. The worm algorithm’s Markov chain is irreducible if the SO
algorithm’s Markov chain is irreducible.

Proof. The key point is that the composition of an open, head swap, and close are
precisely an SO swap. Let x and y be lattice points such that w(x) and 7(y) are
nearest neighbors. Starting with 7, then applying an open at x, a head swap at y,
and a close, we have

T x — 7(x), y — 7(y), wo o= w;
7 =0(mx): x — w, y — 7(y), w — 7(x);
P =Sy): X - aly), ¥y = w, w o mx),
" =C"): x — 7(y), y — 7(x), wo o= w.

This shows that, if the SO algorithm is irreducible on Sy, the worm algorithm
is irreducible on Sy. But then the worm algorithm is also irreducible on Sy q: fix
an initial and final permutation; close the initial permutation, if it is open, to obtain
a closed permutation; use the preceding argument to reach the closed permutation
which lies under the fiber of the desired final open permutation; do an open move
(see lemma [[h.0) if the final permutation is open. O

Remark 7.7.3. The worm algorithm has an additional degree of freedom. If x and
y are nearest-neighbor lattice sites, then the composition of an open at x, a tail swap
at y, and a close results in a similar swap of the jump targets of x and y:

T x — 7(x), y — 7(y), w o~ w;
=0(mx): X — w, y — 7(y), w — m(x);
=T y): x — w, y — 7w(x) w — 7(y);
™ =C"): x — =n(y), y — 7(x), wo o= w.

Proposition 7.7.4 (Aperiodicity). The worm algorithm’s Markov chain is aperiodic.
Proof. The proof is the same as in the SO case, proposition B35 O

Proposition 7.7.5 (Detailed balance). The Markov chain of the worm algorithm
satisfies detailed balance with b = c.

Proof. We need
P(/}ibbs(ﬂ-)A,(ﬂ-> 7T,) = PC,}ibbs(ﬂJ)A/(ﬂJa).

For closed 7 to closed #n": If 7 = 7’ then we have detailed balance trivially. If
m # 7' then A'(m,7") = A'(n’',m) = 0 since there are no transitions between distinct
closed permutations.

For closed 7 to open 7’: If 7’ is not in the fiber above 7, then A'(7, 7') = A'(7',7) =
0 since opens and closes respect fibers (lemma [L5.H). Now suppose 7’ is in the fiber

77

above 7. As in the SO algorithm (proposition [3.6), do cases on AH positive or
negative. If H'(7") < H'(7), then

e_H/(ﬂ—)C — e_Hl(ﬂJ)be_H/(ﬂ—) eHl(ﬂJ) .

Choose
b=c (7.7.6)

to satisfy detailed balance. The case H'(n") > H'(w) results in the same b = ¢
condition.

For open 7 to closed 7’: If 7 is not in the fiber above ', then A'(7, 7') = A'(7', 7)) =
0 (lemma [[BH). If 7 is in the fiber above 7', then we recover the b = ¢ condition.

It now remains to consider open 7 transitioning to open 7’. We assume this to be
the case for the rest of the proof.

If A'(m,7") =0 then we claim A'(7’,7) = 0, as in lemma B3y We have 7’ # ,
7' & Rg(m), and @’ ¢ Rp(m). We need to show m # 7' (which is obvious), m ¢ Rg(7'),
and m ¢ Rp(n’). We prove the contrapositive:

Te{r}URs(r)URp(r") = 7 €{nx}URs(m)U Rp(n).

If 7 = 7 then detailed balance is trivially satisfied. Suppose m € Rg(n’). Then for

some X;, i = 1,...,6, 7’ and 7 have

ox = 7T(x), 7 Hw)
-

— W
TIOX; W, —ow o T(xg).
The lattice sites x; and w are nearest neighbors and 7', 7w agree at all other sites, so
there is a head swap sending 7 to 7’. The case m € Ry(n’) is completely analogous.
This completes the proof of the claim that A'(7,7') =0 — A'(x’,7) =0.

If A'(m,7") # 0 then we claim A'(7’,) # 0, again as in lemma BE38 The logic is
the same as in the contrapositive argument which was just completed.

The last step is to show detailed balance for open 7, 7’ where A’(m, ') # 0. Again

we do cases on whether the energy decreases or increases. If H'(7n") < H'(r), then

equation ([Z7ZH) is

ae '™ (1) = aeH'(™) (e_H,(“)eH/(”,)))
If H'(x") > H'(r), then we have

ae (™) (e_Hl(“/)eH,(”)) = qe” H'(™) (1).

In either case, detailed balance holds. O

78

Remark. Note that for closed 7, there are N choices of open 7’; for open 7, there is
one choice of closed 7’. In the software implementation, the 1/N for opens comes in
through uniform-random choice of x € A. The result is that, for closed 7w, one may
only attempt an open. For open , one attempts a close 1/N of the time, and head
or tail swaps each half the rest of the time, respectively.

As a sanity check, we point out that cycles may grow or shrink upon worm moves.

Proposition 7.7.7. Non-trivial worm head swaps and tail swaps either split one cycle
into two, or join two cycles into one.

Proof. This is the same as for the SO case (proposition [.77), which is strictly an
algebraic result involving permutations: the non-spatiality of the w point plays no
role. O

7.8 Stopping time and modification ideas

The essence of the winding-number problem, as discussed in section B4, is that the
configuration space has multiple energy minima (which are equivalent to probability
maxima), indexed by winding numbers W, W,, and W,. One might also say that the
probability distribution for random spatial permutations is multimodal. The swap-
only algorithm creates only permutations with winding numbers equal to 0. The
swap-and-reverse algorithm creates permutations with even winding numbers: the
cycle-reversal move has zero energy change and allows subsequent permutations to
hop across a low double-winding-number barrier.

The worm algorithm was designed to permit cycles with winding numbers of both
parities to be created: a cycle is opened, its tips wander around (perhaps around the
torus), and then it recloses — all of these steps happening with low-energy changes
afforded by worm tunneling through the energy barrier. The only problem is that
the open worm tips wander around randomly within the L box, and fail to reconnect
as L increases. This is the stopping-time problem. Specifically, histograms show that
the distribution of the wormspan ||7(w) — 7! (w)||s peaks around L/2.

Recall from section that the correctness proofs of sections and [Z7 only
address the limit M — oo; they do not address rate of convergence. The worm
algorithm is correct, but we are not willing to wait long enough for it to produce
its correct results. Figure [shows the problem. CPU time is plotted for 10* SAR
sweeps, at T' = 6.0, as a function of N = L3 for L = 5 to 12. For the SAR algorithm,
CPU time is nearly linear in N. (In fact, it has an N? dependency, but with a
low constant of proportionality, as discussed in section [IH) For the worm algorithm,
CPU time is not linear in N; we cannot complete a computation for L large enough to
be interesting, namely, 40 to 80. Specifically, a log-log plot and regression on the data
of figure [show that the worm algorithm is strongly quadratic in N. Fortunately,
examination of random-variable plots for L = 10, comparing SAR to worm, show that

79

similar results are produced — other than, of course, the winding-number histogram

itself.

10" SAR sweeps, 3 reps, T=6.0, a=0

4
310% worm sweeps, 3 reps, T=6.0, a =0

(]
el

O R, N WP U O
— T T T T

CPU time in seconds

0 2 4 6 8 10 12 14 16 18 0024681012141618

2 2
N/10 N/10

FIGURE 7.4. Scalability of SAR and worm algorithms. CPU times for 10* SAR
sweeps and 102 worm sweeps are shown as a function of N = L3 for L = 5 to 12.
SAR time is nearly linear in N; worm time is strongly quadratic in N. Interesting L
(40-80) are unattainable.

Other ideas for addressing the winding-number problem include the following:

In analogy with cluster updates for the Ising model, form a band around the
torus and do an L-cycle transformation. Couple the SAR algorithm with occa-
sional band updates. However, band updates have a too-low acceptance rate,
as was shown in chapter [B.

Temporarily pinch the torus geometry somehow in the SAR algorithm, such
that the distance penalty for wrapping around the torus is decreased.

Temporarily reduce and restore the temperature 7" in the SAR algorithm — this
is an annealing method. This approach brings with it a performance problem:
re-thermalization (section L) would need to be performed after each annealing
step.

Modify the worm algorithm to direct the worm somehow. At the time the worm
is opened, add a distance weight of =L in the x, y, or z direction which will
be removed by a wrap around the torus, increasing or decreasing that winding-
number component by 1. Our attempts to do this have not satisfied detailed
balance.

Review the PIMC literature again and seek other inspiration.

The worm algorithm, even though it is effectively unusable as currently designed,
is the only way we currently have of sampling from the full winding-number config-
uration space, i.e. odd as well as even winding numbers. Thus, it will be worth the
future effort to solve the stopping-time problem.

