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Chapter 6

Band updates

Winding cycles are a global phenomenon, while the SO swaps of section 5.1 are local.
The Swendsen-Wang algorithm for the planar Ising model addresses a global/local
problem not unlike our winding-number problem, which was presented in detail in
section 5.4. Motivated by Swendsen-Wang for the Ising model, we attempt to define
a Metropolis step for our random-cycle model which changes one of the winding-
number components Wx, Wy, or Wz by ±1. This attempt at non-local updates has
an unreasonably low acceptance rate, namely, on the order of e−L where L is the box
length. Nonetheless, this concept may provide fodder for better, future ideas.

6.1 The algorithm

As discussed in section 5.3, a Metropolis transition from π to π′ may be thought of as
composition with another permutation τ , i.e. π′ = τπ. We replace the swap operator
τ = Ga,b of section 5.3, which was a two-cycle, with a permutation τ which has a wind-
ing L-cycle. Without loss of generality, it suffices to discuss a permutation τ which
sends every lattice point to itself except for one line of points with y and z coordinates
equal to zero (figure 6.1). This τ will have winding number (Wx, Wy, Wz) = (+1, 0, 0).
If we can do that, then by reflection and rotation symmetries we can construct similar
τ ’s with Wx, Wy, or Wz equal to ±1.

Figure 6.1 displays the idea. The permutation τ is an L-cycle; we put π′ = τπ.
It seems clear from the picture that the winding number is modified in the desired
manner, and moreover it seems plausible to conjecture that winding numbers are
additive with respect to permutation composition, i.e. that W(π′) = W(τ) + W(π).
Proving either of these statements rigorously would be worthwhile if band updates
were worth pursuing. However, as shown in the next section, they are not.

6.2 Acceptance rate

We examine the acceptance rate of the band-update algorithm using a semi-empirical
method. Recall from section 3.3 that we define the random variable jx(π) to be
‖π(x) − x‖Λ. By examination of histograms acquired over MCMC simulations, we
see that this parameter is noncritical; its values change smoothly with T near Tc.
For T = 6 and 7, respectively, we find1 distributions for jx, as shown in table 6.1.

1We use the statistics convention wherein P̂Gibbs is an experimental estimator for the exact (but
unknown) value PGibbs.
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Figure 6.1. Example of band update as composition with an L-cycle: π′ = τπ. The
winding number Wx increases by +1.

Thus for T = 6, 7, respectively, mean jump lengths are 0.608 and 0.245, while mean

j P̂Gibbs(J = j), T = 6 j P̂Gibbs(J = j), T = 7

0 0.4801 0.0000000 0.7745
1 0.3361 1.0000000 0.1822√
2 0.1545 1.4142136 0.0378√
3 0.0216 1.7320508 0.0042

4 0.0036 2.0000000 0.0012√
5 0.0032 2.2360680 0.0001√
6 0.0009

Table 6.1. Empirical jump-length distribution for T = 6, 7.

squared jump lengths are 0.746 and 0.276. Roughly, the latter is of order 0.5. Recall
in particular that it is the squared jump length which provides the main contribution
to the system energy (equation (2.1.3)).

The left-hand side of figure 6.2 shows (in two dimensions only) various possibilities
for a permutation arrow from a point x. The right-hand side of the figure shows what
happens to the jump lengths at x on a right shift. (All L points in the L-cycle will be
affected similarly.) An up arrow of length 1 becomes a diagonal up-left arrow of length√

2, a right arrow of length 1 becomes a right arrow of length 2, and so on. Given
an attempted band update π → π′, the typical value of the energy change ∆H at a
single point (remembering that cycle-weight corrections are low-order perturbations,
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Figure 6.2. Change in jump lengths for a point affected by a band update.

since α is small) is

T

4

(

E[jx(π′)2] − E[jx(π)2]
)

.

From the table just above, we can compute the expected values of jx(π)2 and jx(π
′)2.

We find the energy difference per point to be on the order of +0.8 ·T/4 ≈ +1.2. Since
L points are involved in a band update, this means E[∆H ] ≈ 1.2L ≈ L. Transitions
are accepted with probability min{1, e−∆H} (section 4.5) which is approximately e−L.
We need to consider L from approximately 30 and upward to get past the most severe
finite-size effects; e−30 ≈ 10−14 is effectively zero, and thus proposed band updates are
effectively never accepted. This calculation matches with simulation tests performed
in software.

6.3 Band updates with compensation

At the 2010 Workshop of David Landau’s Center for Simulational Physics at the Uni-
versity of Georgia, Friederike Schmid of the University of Mainz suggested a solution
to the acceptance-rate problem with the band-update algorithm. This idea comes
too late to include in the large-scale computational runs done for this dissertation;
however, it should work, and might be used in subsequent computational work on
this problem.

Specifically, the problem with the band update is that the change in energy is of
order L. To counteract this, in the same Metropolis step in which one proposes a band
update as described above, one should also find another cycle of π, not intersecting
the band, with cycle length approximately L. The proposed change will do the band
shift, while also replacing this second cycle with one-cycles at each of its points — the
latter reducing the energy by L or so. The total energy change will be approximately
zero, and thus the acceptance rate should be usably high.


