
50

Chapter 5

The swap-only and swap-and-reverse algorithms

This chapter (along with chapter 7) presents Markov chains for MCMC sampling
of the model of random spatial permutations (chapter 2) within the MCMC-recipe
framework of chapter 4. The algorithms are proved correct, then compared and
contrasted. Computational results using the swap-and-reverse algorithm are given in
chapter 11.

5.1 The swap-only algorithm

The swap-only algorithm for transitioning from π to π′, within the context of the
recipe in section 4.5, is as follows. One sweeps through sites x of the lattice in either
sequential or uniform-random order. In either case1, one obtains a lattice site x. One
then does a Metropolis step at site x:

• Choose a site π(y) from among the six nearest neighbors of π(x).

• Propose to change π to the permutation π′ which has π′(z) = π(z) for all
z 6= x,y but π′(x) = π(y) and π′(y) = π(x). (See figure 5.1.)

• With probability min{1, e−∆H} where ∆H = H(π′)−H(π), accept the change.
(If the change is rejected, set π′ = π.)

swap w.p.
∼ 1 ∧ e−∆H

xx

π(x)π(x)

yy

π(y)π(y)

Figure 5.1. Metropolis moves for the swap-only algorithm.

Definition 5.1.1. A swap is trivial if x = y.

1For computational results presented in chapter 11, site selection was sequential. Experiments

show that sequential site selection and random site selection produce indistinguishable results, for

our model and for the near-critical temperature range we consider.



51

5.2 Explicit construction of the Markov matrices

For section 5.3 we will need an explicit construction of the Markov matrices corre-
sponding to the swap-only algorithm as described in section 5.1.

The Markov perspective on the algorithm is that, given a probability distribution
P

(π0)
k (π), the distribution for the subsequent permutation is

P
(π0)
k+1 (π′) =

∑

π∈SN

P
(π0)
k (π)Ak(π, π′)

or, in matrix/vector notation, P
(π0)
k+1 = P

(π0)
k Ak. In this section we precisely describe

the matrices Ak; in section 5.3 we show that P
(π0)
k approaches the Gibbs distribution

PGibbs (equation (2.1.4)) as k → ∞.
The matrices Ak are N ! × N !, with rows indexed by π1, . . . , πN ! and columns

indexed by π′
1, . . . , π

′
N !. Most of the entries of Ak are zero: Metropolis steps change

only two permutation sites whereas most π, π′ differ at more than two sites.

Definition 5.2.1. For π, π′ ∈ SN , define

d(π, π′) = #{i = 1, 2, . . . , N : π(i) 6= π′(i)}.

Remark. Note that d(π, π′) 6= 1 since if two permutations agree on N −1 sites, they
must agree on the remaining site.

Lemma 5.2.2. The function d(π, π′) is a metric on SN .

Proof. Symmetry is obvious, as is non-negativity. For positive definiteness, note
that d(π, π′) = 0 iff π = π′. For the triangle inequality, let π, π′, π′′ ∈ SN . Partition
the set {1, 2, . . . , N} into the four disjoint sets

A = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) = π′′(i)},

B = {i = 1, 2, . . . , N : π(i) = π′(i), π′(i) 6= π′′(i)},

C = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) = π′′(i)},

D = {i = 1, 2, . . . , N : π(i) 6= π′(i), π′(i) 6= π′′(i)}.

Then π = π′′ on all of A; π 6= π′′ on all of B and C; and π, π′′ may or may not agree
on various elements of D:

A B C D
π = π′ π = π′ π 6= π′ π 6= π′

π′ = π′′ π′ 6= π′′ π′ = π′′ π′ 6= π′′

π = π′′ π 6= π′′ π 6= π′′ Varies



52

That is,

d(π, π′) = #C + #D,

d(π′, π′′) = #B + #D,

#B + #C ≤ d(π, π′′) ≤ #B + #C + #D.

Then

d(π, π′′) ≤ #B + #C + #D ≤ #B + #C + 2#D = d(π, π′) + d(π′, π′′).

Definition 5.2.3. Lattice sites x and y are nearest-neighbor if ‖x − y‖Λ = 1.

Definition 5.2.4. For π ∈ SN and x ∈ Λ, define

Rx(π) = {π′ ∈ SN : d(π, π′) = 2 and ‖π(x) − π(y)‖Λ = 1}

where the x and y are taken to be the two points at which π and π′ differ. Then Rx(π)
is the set of permutations π′ reachable from π on a swap involving site x. This is
used for sequential site selection. Likewise, for use with random site selection, define

R(π) = {π′ ∈ SN : d(π, π′) = 2 and ‖π(x) − π(y)‖Λ = 1}

where the x and y are taken to be the two points at which π, π′ differ. Then R(π) is
the set of permutations π′ reachable from π on a swap. We also write

π′ ◦–◦π

if π′ ∈ Rx(π) or π′ = π (for sequential site selection), or π′ ∈ R(π) or π′ = π (for
random site selection).

The Metropolis steps are then described as follows. First consider sequential site
selection. For each π ∈ SN ,

Ax(π, π′) =



















1
6

(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ Rx(π),

1 −
∑

π′′∈R(π)

1

6

(

1 ∧ e−H(π′′)+H(π)
)

, π = π′;

0, otherwise.

(5.2.5)

To justify the choice of prefactor 1/6, note that we choose one of six π(y) at uniform
random from the six nearest-neighbor lattice sites of π(x). If the change is accepted,
then we obtain π by swapping at x and y; otherwise, we take π′ = π.



53

Next we construct the Markov matrix for random site selection. For each π ∈ SN ,

A(π, π′) =



















1
3N

(

1 ∧ e−H(π′)+H(π)
)

, π′ ∈ R(π),

1 −
∑

π′′∈R(π)

1

3N

(

1 ∧ e−H(π′′)+H(π)
)

, π = π′;

0, otherwise.

(5.2.6)

To justify the choice of prefactor 1/3N , note that there are N choices of lattice points
x. For each x, there are 6 choices of π(y) which are nearest neighbors to π(x). This
double-counts the 3N distinct choices of π′ reachable from π in a single Metropolis
step, since choosing x and then y results in the same Metropolis step as choosing y

and then x.
The use of the Markov matrices in practice is as follows. Number the lattice

sites x1, . . . ,xN . When using sequential site selection, the kth Metropolis sweep (as

described in section 4.5) begins with a permutation π distributed according to P
(π0)
k .

A Metropolis step is done at site x1, using transition matrix Ax1
, followed by a

Metropolis step at site x2, using transition matrix Ax2
, and so on up to site xN . The

sweep is then complete, and the distribution of π′ is

P
(π0)
k+1 (π′) = P

(π0)
k (π) Ak, Ak = AxN

· · ·Ax1
.

The chain is non-homogeneous, if we consider all the intermediate permutations after
each Metropolis step. Yet, at the level of Metropolis sweeps, the chain is homogeneous
since at each sweep we apply the composite transition matrix AxN

· · ·Ax1
to obtain

π′ from π.
When we use random site selection, the kth Metropolis sweep begins with a per-

mutation π distributed according to P
(π0)
k . We do N Metropolis steps, each using the

transition matrix A, each selecting a site x at uniform random from among x1, . . . ,xN .
The sweep is then complete, and the distribution of π′ is

P
(π0)
k+1 (π′) = P

(π0)
k (π) Ak, Ak = AN .

The chain is homogeneous, whether viewed at the level of Metropolis steps or Metropo-
lis sweeps.

5.3 Correctness of the swap-only algorithm

It is clear that the swap-only algorithm produces a sequence of permutations, but
with what distribution? From the Markov-chain theory in section 4.2, we know that
if the chain is irreducible, aperiodic, and satisfies detailed balance, then the chain
has the Gibbs distribution (equation (2.1.4)) as its unique invariant distribution. All
the results in this section will apply for sequential or random site selection; in this
section, we write A to refer to either A or Ax.



54

Proposition 5.3.1 (Irreducibility). For all π, π′, there is an n such that An(π, π′) >
0. That is, any permutation is reachable from any other.

Proof. Transpositions generate SN [DF]. Thus, for all π ∈ SN , there exist transpo-
sitions σ1, . . ., σm such that π =

∏m

j=1 σj . Thus, it suffices to show that given any
permutation π and any two points x and z, so π : x 7→ π(x) and π : z 7→ π(z), we can
construct a sequence of swaps sending π to π′ so that π′ : x 7→ π(z), π′ : z 7→ π(x),
and π′(y) = π(y) for all y 6= x, z. (If π(x) and π(z) are nearest-neighbor lattice sites,
of course, then a single swap does the job.)

Define Ga,b : SN → SN to be the swap operator for nearest-neighbor lattice sites
π(a) and π(b), i.e. π′ = Ga,bπ. Given x and z, there is a (non-unique) sequence of
lattice sites y0,y1,y2, . . . ,yn such that y0 = x, yn = z, and ‖π(yi+1) − π(yi)‖Λ = 1
for i = 0, 1, . . . , n − 1. (See figure 5.2.) We will construct a sequence of swaps
along this nearest-neighbor path whose end result is to swap the permutation arrows
starting at x and z, leaving all other arrows unchanged. We first need a lemma about
compositions of swaps.

π(y3)

π(y3)

π(y3)

π(y3)

π(y3)

π(y3)

π(y2)

π(y2)

π(y2)

π(y2)

π(y2)

π(y2)

π(y1)

π(y1)

π(y1)

π(y1)

π(y1)

π(y1)

π(y0)

π(y0)

π(y0)

π(y0)

π(y0)

π(y0)

(5)(4)

(3)(2)(1)

(6)

y2

y2

y2

y2

y2

y2

y2
y1

y1

y1

y1

y1

y1

y1y3

y3

y3

y3

y3

y3

y3

y0 y0

y0

y0

y0

y0

y0

Figure 5.2. A sequence of (nearest-neighbor) swaps which results in a non-nearest-
neighbor swap.

Notation 5.3.2. Given x1, . . . ,xN and a permutation π, we may write π as an image
map with the xi’s along the top row and their images along the bottom row:

(

x1 . . . xN

π(x1) . . . π(xN )

)

Lemma 5.3.3. The composition Ga,c ◦ Ga,b behaves as follows:

π =

(

. . . a b c . . .

. . . π(a) π(b) π(c) . . .

)

7→ π′ =

(

. . . a b c . . .

. . . π(c) π(a) π(b) . . .

)



55

Proof. The first map, Ga,b, does
(

. . . a b c . . .

. . . π(a) π(b) π(c) . . .

)

7→

(

. . . a b c . . .

. . . π(b) π(a) π(c) . . .

)

;

Ga,c sends this to

(

. . . a b c . . .

. . . π(c) π(a) π(b) . . .

)

.

Corollary 5.3.4. The composition Gy0,yn
◦ Gy0,yn−1

◦ . . . ◦ Gy0,y2
◦ Gy0,y1

, sending
π 7→ π′, performs the right cyclic shift on images of y0, . . . ,yn given by
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→

(

y0 y1 . . . yn−1 yn

π(yn) π(y0) . . . π(yn−2) π(yn−1)

)

.

Likewise, Gyn,y1
◦ Gyn,y2

◦ . . . ◦ Gyn,yn−2
◦ Gyn,yn−1

leaves the image of y0 unchanged
and performs the left cyclic shift on images of y1, . . . ,yn given by
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→

(

y0 y1 . . . yn−1 yn

π(y0) π(y2) . . . π(yn) π(y1)

)

.

Proof. These follow from the lemma by induction on n.

Composing these two maps, we find that

(Gyn,y1
◦ Gyn,y2

◦ . . . ◦ Gyn,yn−2
◦ Gyn,yn−1

) ◦ (Gy0,yn
◦ Gy0,yn−1

◦ . . . ◦ Gy0,y2
◦ Gy0,y1

)

swaps the images of x = y0 and z = yn while leaving all other images unchanged,
that is,
(

y0 y1 . . . yn−1 yn

π(y0) π(y1) . . . π(yn−1) π(yn)

)

7→

(

y0 y1 . . . yn−1 yn

π(yn) π(y1) . . . π(yn−1) π(y0)

)

.

This ends the proof of propostion 5.3.1.

Remark. Below we will discuss winding cycles, and the empirical fact that the swap-
only algorithm reaches them only rarely. The chain is irreducible but the non-zero
transition probabilities can still be very small.

Proposition 5.3.5 (Aperiodicity). The swap-only algorithm’s Markov chain is ape-
riodic.

Proof. This follows from irreducibility, which says in particular that for every π,
there is an integer m such that Am(π, π) > 0. Then An(π, π) > 0 for all n > m,
implying p(π) = 1.



56

Proposition 5.3.6 (Detailed balance). For all π, π′ ∈ SN ,

PGibbs(π)A(π, π′) = PGibbs(π
′)A(π′, π). (5.3.7)

Remark. For the swap-only algorithm, this is a trivial result. We work through the
details in order to foreshadow the non-trivial construction of proposition 7.7.5 for the
worm algorithm.

Proof. The detailed-balance statement in terms of the Gibbs distribution (equa-
tion (2.1.4)) and the swap-only Metropolis transition matrices (equations (5.2.5) and
(5.2.6)) is

e−H(π)

Z

(

1 ∧ e−H(π′)eH(π)
)

?
=

e−H(π′)

Z

(

1 ∧ e−H(π)eH(π′)
)

.

The Z’s cancel. The lemma below shows that A(π, π′) 6= 0 iff A(π′, π) 6= 0. If
A(π, π′) = 0, then detailed balance holds. If A(π, π′) 6= 0, then there are two cases.
If H(π′) ≤ H(π), then

e−H(π) (1) = e−H(π′)
(

e−H(π)eH(π′)
)

.

If H(π′) > H(π),

e−H(π)
(

e−H(π′)eH(π)
)

= e−H(π′) (1) .

In all cases, detailed balance holds.

Lemma 5.3.8. For all π, π′ ∈ SN ,

A(π, π′) 6= 0 ⇐⇒ A(π′, π) 6= 0.

Proof. As a direct consequence of definition 5.2.4 of R(π), π′ ∈ R(π) if and only if
π ∈ R(π′). The same holds for Ax and Rx(π).

This lemma completes the proof that the swap-only algorithm satisfies detailed
balance and thus has the Gibbs distribution as its invariant distribution.

The following proposition is not a correctness result, but rather a sanity check. It
shows that cycles may grow or shrink upon swaps.

Proposition 5.3.9. If x and y are in disjoint cycles before a non-trivial swap at x

and y, then they are in the same cycle afterward and vice versa (see figure 5.3).



57

Figure 5.3. Swaps merge disjoint cycles and split single cycles. The left-hand
permutation can be reached from the right-hand permutation via a swap, and vice
versa.

Proof. First suppose that x and y are in disjoint cycles. Let the respective cycle
lengths be ℓ(x) = a and ℓ(y) = b. Recall that 1 ≤ a, b ≤ N . Those cycles are

x 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x

and
y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

Since these are disjoint cycles, all elements listed are distinct lattice sites. After the
swap, we have

y 7→ π(x) 7→ π2(x) 7→ . . . 7→ πa−1(x) 7→ x

and
x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ y.

This is a single cycle of length a+ b, starting with y, including x, and returning to y.
Second, suppose that x and y are in the same cycle. Let a = ℓx,y(π) and b =

ℓx,y(π) (see definition 3.2.2). (These numbers are both positive since the swap is
non-trivial, i.e. x 6= y.) Then we have

x 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

This is a single cycle of length a + b; all lattice sites listed are distinct. After the
swap, we have

y 7→ π(x) 7→ π2(x) 7→ πa−1(x) 7→ y and x 7→ π(y) 7→ π2(y) 7→ . . . 7→ πb−1(y) 7→ x.

These are disjoint cycles of length a and b, respectively; the first contains x and the
second contains y.

Remark 5.3.10. If x ◦–◦y, i.e. the swap splits their common cycle, the old cycle
lengths ℓx(π) and ℓy(π) are equal, and the new cycle lengths after the swap are

ℓx(π
′) = ℓy,x(π) and ℓy(π′) = ℓx,y(π).

Otherwise, i.e. the swap merges the disjoint cycles, we have

ℓx(π
′) = ℓy(π′) = ℓx(π) + ℓy(π).



58

5.4 Winding numbers and the swap-and-reverse algorithm

The propositions of section 5.3 showed that the swap-only algorithm is correct, asymp-
totically in the number of Metropolis sweeps — in particular, any permutation is
reachable from any other with non-zero probability. However, in practice some of
these transition probabilities can be quite small. In particular, we observe empiri-
cally that the swap-only algorithm always generates permutations with zero winding
number. This is readily proved.

Proposition 5.4.1. In the short-jump-length regime (as discussed in sections 2.3,
3.1, and 3.6), the swap step of the swap-only algorithm preserves winding number.

Remark. This means that a single jump of length on the order of L/2 — which
happens with non-zero but very small probability — is required for the SO algorithm
to change a winding number.

Proof. The permutations before and after the swap have winding numbers

W(π) =





Wx(π)
Wy(π)
Wz(π)



 =
N

∑

i=1

dΛ(π(xi),xi), W(π′) =





Wx(π
′)

Wy(π
′)

Wz(π
′)



 =
N

∑

i=1

dΛ(π′(xi),xi)

where the difference vector dΛ is as defined in equation (3.1.4). Since we work in the
regime of short jumps, and since π′(xi) is a nearest neighbor of π(xi), the Euclidean
charts overlap and the xi’s cancel when we subtract W(π) from W(π′). Also, π
agrees with π′ except at the two swap points x and y; we have π′(x) = π(y) and vice
versa. Thus the change in winding number is computed entirely in the same chart
and we have

W′ − W =
1

L

N
∑

i=1

dΛ(π′(xi), π(xi)) =
1

L
[dΛ(π′(x), π(x)) + dΛ(π′(y), π(y))]

=
1

L
[π′(x) − π(x) + π′(y) − π(y)] =

1

L
[π(y) − π(x) + π(x) − π(y)] = 0.

An example is shown in figure 5.4 in dimension d = 2 with N = 8 points on a
lattice of width L = 4. The sites affected by the permutation swap are x = x3 and



59

x1x1 x2x2 x3x3 x4x4

x5x5 x6x6 x7x7 x8x8

Common Euclidean chart

Figure 5.4. Example permutations π (left) and π′ (right) illustrating winding-
number conservation.

y = x7. The change in winding numbers is

W(π′) −W(π) =
1

4
[dΛ(π′(x3),x3) + dΛ(π′(x7),x7) − dΛ(π(x3),x3) − dΛ(π(x7),x7)]

=
1

4

[(

1
0

)

+

(

−1
0

)]

−
1

4

[(

0
−1

)

+

(

0
1

)]

=

(

0
0

)

=
1

4
[dΛ(π′(x), π(x))] +

1

4
[dΛ(π′(y), π(x))]

=
1

4

[(

1
1

)

+

(

−1
−1

)]

.

A partial solution is explained intuitively by figure 5.5. Part 1 of the figure shows
a permutation π with a long cycle on the torus which almost meets itself in the x
direction. In part 2, after a Metropolis step sending π to π′, one cycle winds by
+1 and the other by −1. Metropolis steps create winding cycles only in opposite-
direction pairs; the total Wx(π) is still zero. Part 3 of the figure shows that if we
reverse one cycle (which is a zero-energy move), Wx(π) is now 2. In general, winding
numbers of even parity can be generated. We are sampling from several, but not all,
modes in a multimodal probability distribution on permutations which is indexed by
the winding numbers Wx, Wy, and Wz.

The swap-and-reverse algorithm adds a second type of sweep to the swap-only al-
gorithm. Namely: (1) In a swap-only sweep, for each lattice site one does a Metropolis
step as above. (2) In a cycle-reversing sweep, for each cycle in the permutation, one



60

Figure 5.5. Conservation of winding number in the swap-only algorithm, and a
partial solution provided by the swap-and-reverse algorithm.

reverses the direction of the cycle with probability 1/2. This permits winding num-
bers of even parity in each of the three axes. The correctness proof is unaffected, since
cycle reversal is a zero-energy change. The time required to reach permutations with
non-zero winding numbers, which the asymptotic correctness proof does not address,
is reduced. The additional penalty in terms of CPU time consumed by cycle reversal
is found to be negligible.

Other solutions exist to generate winding numbers of arbitrary parity: the band-
update method of chapter 6 and the worm algorithm of chapter 7. As will be shown,
they suffer from too-low acceptance rate and too-long stopping time, respectively.
Therefore, the swap-and-reverse algorithm is our current best algorithm; it is used
to generate all the results discussed in chapter 11. The order parameters fS and
fW depend on winding phenomena, but the other three, 1/ξ, fI , and fmax, do not;
furthermore, results obtained in chapter 11 using each of the five order parameters
are, for the most part, compatible. Yet, as we will see in chapter 11, fS and fW do
not permit successful finite-size scaling.


