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Chapter 4

Markov chain Monte Carlo methods

In this chapter we discuss the need for random-sampling methods, and justify their
use rigorously. Given a random variable X(π), such as any of those presented in
chapter 3, the expectation of X is (equation (2.1.6))

E[X] =
∑

π∈SN

PGibbs(π)X(π).

This is a real number, with no uncertainty. The problem is that the number of
permutations, N !, grows intractably in N : even for L = 10 (and we consider L up to
80), N = 1000 and N ! is a number with over 5,000 digits. The true expectation is
effectively incomputable. Expectations are instead estimated by summing over some
number M (in the current work, 105 or 106) of typical permutations. The sample
mean

〈X〉M =
1

M

M
∑

k=1

X(πk) (4.0.1)

depends on the random sequence π1, . . . , πM . It is now a random variable with its
own variance. The two main sources of error in MCMC simulations are initialization

bias and sampling variability. The former involves thermalization (section 9.6) and
multimodality of distributions (sections 5.4 and 7.8); the latter involves autocorrelation

(section 9.15 and appendix B).
To create such a sequence of system states (for us, permutations), the method

used throughout the computational physics community [Berg, LB] is Markov chain
Monte Carlo. Namely, given a permutation πk, one selects a successor permutation
πk+1 in some random way. This is the Monte Carlo part. Moreover, the transition
probabilities from πk to each candidate πk+1 depend only on πk, and not on any
previous choices. This is the Markov chain part.

In the next sections we show (1) we can construct Markov chains which sam-
ple from the Gibbs distribution PGibbs(π) (equation (2.1.4)); (2) other distributions
(induced by the selection of initial state) converge to the Gibbs distribution; (3) the
sample mean 〈X〉M converges almost surely to the true expectation E[X]; and (4) the
variance of 〈X〉M can be estimated, allowing us to place error bars on our estimates
of E[X]. Most of the material in this chapter is familiar: see [Berg, LB, CB, FG, GS]
to name only a few. Results are restated here for self-containment of presentation.
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4.1 Markov chains and Markov matrices

Before continuing to discuss random permutations and the Gibbs measure, we spend
some time discussing more general random sequences, including Markov chains as
a special case. This will turn out to be worthwhile: one of the strengths of this
dissertation, in the author’s estimation, is the careful disambiguation of some mis-
leading notation and terminology (principally, overuse of the single letter P ) which
are encountered from time to time in the literature.

Let Ω be a finite set, and put #Ω = K. (For example, Ω = SN with K = N !.)
The set of all sequences of elements of Ω, indexed by the non-negative integers, is
ΩN. Just as we can have an arbitrary probability measure P on Ω, we can have an
arbitrary probability measure P on ΩN. Marginal distributions on the kth slot are
written Pk. If Sk is an Ω-valued random variable, e.g. a random selection from Ω at
the kth slot, then S0, S1, S2, . . . is a random sequence, or discrete-time random process.
Since P is arbitrary, the Pi are not necessarily the same distributions, and samples
Si and Sj at the ith and jth slots are not necessarily independent.

Repeatedly using the conditional-probability formula P (E | F ) = P (E, F )/P (F )
for events E and F , we can always split up the probability of a finite sequence of
samples into a sequencing of initial and conditional probabilities:

P(S1 = ω1, S2 = ω2, . . . , Sn = ωn) =P(S1 = ω1)

·P(S2 = ω2 | S1 = ω1)

·P(S3 = ω3 | S1 = ω1, S2 = ω2)

·P(Sn = ωn | S1 = ω1, · · · , Sn−1 = ωn−1).
(4.1.1)

A Markov process (or Markov chain if the state space Ω is finite) is a discrete-time
random process such that for all k > 0,

P(Sk = ωk | S1 = ω1, S2 = ω2, . . . , Sk−1 = ωk−1) =P(Sk = ωk | Sk−1 = ωk−1).

That is, if the probability of moving from one state to another depends only on the
previous sample, and on nothing farther into the past, then the process is Markov.
Now we have

P(S1 = ω1, . . . , Sn = ωn) = P(S1 = ω1)

·P(S2 = ω2 | S1 = ω1) · · · ·P(Sn = ωn | Sn−1 = ωn−1).
(4.1.2)

We have the initial distribution for the first state, then transition probabilities for
subsequent states. Precisely, one says a Markov chain is a discrete-time random
process with this Markov property. With slight abuse of notation, though, we also
refer to the probability distribution P as a Markov chain if it has this property,
since given P we can always construct a discrete-time random process S0, S1, S2, . . ..
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Additionally, if for all ω, ω′ ∈ Ω the conditional probabilities P(Sk+1 = ω′ | Sk = ω)
are the same for all k, then we say the Markov chain is homogeneous.

Observe that P(Sk+1 = ωj | Sk = ωi) is a K ×K matrix of numbers between zero
and one, with the property that rows sum to one (since each ωi must transition to
some ωj). Such a matrix is called a stochastic matrix or Markov matrix. We might
as well name that matrix Ak, with the entry in the ith row and jth column given by

(Ak)ij = P(Sk+1 = ωj | Sk = ωi).

If the chain is homogeneous, we omit the subscript and write A. The key to making
linear algebra out of this setup is the following law of total probability :

P(Sk+1 = ωj) =
∑

ωi

P(Sk = ωi, Sk+1 = ωj)

=
∑

ωi

P(Sk = ωi)P(Sk+1 = ωj | Sk = ωi)

=
∑

ωi

P(Sk = ωi)(Ak)ij.

(4.1.3)

The probability mass functions Pk are row vectors. The PMF Pk+1 of Sk+1 is the
PMF Pk of Sk times the Markov matrix Ak. In vector/matrix notation,

Pk+1 = PkAk.

Throughout this section, we supposed we had been given a probability distribu-
tion P on ΩN which satisfied the Markov property; we obtained Markov transition
matrices. If, on the other hand, we start with an initial distribution P0 and stochas-
tic matrices A0, A1, . . ., then we can re-use equation (4.1.3) to obtain P1 = P0A0

and, inductively, Pk+1 = PkAk. We can then use equation (4.1.2) in reverse to ob-
tain a probability distribution P on ΩN. Note that now the process is Markov by
construction.

In summary, a Markov chain is specified by a sequence-space distribution P with
the Markov property, or an initial distribution P0 and a sequence of transition matri-
ces. Furthermore, we can go back and forth between these two points of view:

P←→ (P0, A0, A1, A2, . . .).

If the chain is homogeneous, we write

P←→ (P0, A).
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4.2 Invariant and limiting distributions

The only probability distribution for random permutations considered thus far is the
Gibbs distribution PGibbs of equation (2.1.4) on page 23. However, others exist. If
one is asked for a permutation π and one always replies with the identity, then the
distribution of that answer is the singleton measure supported on the identity. This is
not the Gibbs measure (unless α = 0 and β = 0). A third distribution is the uniform
distribution, where each permutation has probability 1/N !. (This is the same as the
Gibbs measure only for α = 0 and T = 0.)

Following the construction of the final paragraph of section 4.1, suppose we se-
lect an initial permutation π0 from some probability distribution: for computational
work done in this dissertation, this will be the singleton measure supported at the
identity permutation, although a uniform-random π0 is another possibility. Given
Markov transition matrices Ak to be constructed in sections 5.2 and 7.6, we obtain a
random sequence of permutations π0, π1, π2, . . .. We write P(π0) for the probability
distribution on this sequence space, with P

(π0)
k being the marginal at the kth slot.

Below, we will construct Markov transition matrices Ak which preserve the Gibbs
measure PGibbs, i.e. PGibbs = PGibbsAk. The following terminology applies.

Definition 4.2.1. A probability distribution P is invariant for a Markov transition
matrix A if P = PA, that is, if for all j = 1, . . . , K,

P (S2 = ωj) =

K
∑

i=1

AijP (S1 = ωi).

In vector/matrix notation, this means

P = PA.

In other words, P is invariant for A if A-transitions preserve the distribution P . If
S1 is distributed according to P , then S2 will also be distributed according to P ,
and so on. Such a sequence of states S1, S2, . . ., while not in general independent, is
identically distributed.

Remark 4.2.2. A homogeneous chain is not the same as a stationary sequence. In
the former case, the transition matrix is the same at each time step; in the latter
case, the probability distributions are the same at each time step.

Example 4.2.3. ⊲ An illustrative example uses die-tipping. Recall that an ordinary
six-sided die has pips on opposite faces summing to seven. There are six states, which
we assume to be uniformly distributed if the die is rolled. Given that the die has n
pips facing up, we may tip the die by picking one of the four sides at uniform random
and putting that side up. E.g. if 1 is up, then after the tip, 2, 3, 4, or 5 will appear
each with probability 1/4; 1 or 6 will appear with probability 0.
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The transition matrix, with rows indexing the current state and columns indicating
the successor state, is

A =

















0 1/4 1/4 1/4 1/4 0
1/4 0 1/4 1/4 0 1/4
1/4 1/4 0 0 1/4 1/4
1/4 1/4 0 0 1/4 1/4
1/4 0 1/4 1/4 0 1/4

0 1/4 1/4 1/4 1/4 0

















.

Suppose the die is initially set on table with 1 up, i.e.

P0 =
(

1 0 0 0 0 0
)

.

Then

P1 = P0 A =
(

0 1/4 1/4 1/4 1/4 0
)

If, instead, the die is initially rolled, then P0 is uniform:

P0 =
(

1/6 1/6 1/6 1/6 1/6 1/6
)

.

One computes P1 to be uniform as well:

P1 = P0 A =
(

1/6 1/6 1/6 1/6 1/6 1/6
)

.

The 1-up distribution is not invariant for the die-tipping transition rule, but the
die-roll distribution is. ⊳

Given a Markov matrix A, one may wish to find an invariant distribution P .
Going the other way, given a distribution P , one may wish to construct a Markov
matrix A such that P is invariant with respect to A. The latter is our main goal here:
the distribution of interest is the Gibbs distribution PGibbs. The following theorem is
key. First, we define the terminology necessary to state it.

Definition 4.2.4. A Markov chain P on a state space Ω is irreducible if for all
ω, ω′ ∈ Ω there exists an n > 0 such that P(Sn = ω′ | S0 = ω) > 0.

Definition 4.2.5. The period of ω ∈ Ω is

p(ω) = gcd{n : P(Sn = ω | S0 = ω) > 0}

We say that ω has period p if it reappears with probability 1 after every p steps. A
state ω is aperiodic if p(ω) = 1. A chain is aperiodic if p(ω) = 1 for every ω.

Remark. An irreducible, aperiodic chain on a finite state space is sometimes called
ergodic.
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Definition 4.2.6. A Markov matrix A on a state space Ω (with #Ω = K) and a
distribution P on Ω are reversible, or satisfy detailed balance, if for all 1 ≤ i, j ≤ K,

Aij P (ωi) = Aji P (ωj).

Theorem 4.2.7 (Invariant-distribution theorem). Fix a finite set Ω. Let A be a

Markov transition matrix on Ω, as above, and let P be a probability distribution on

Ω. If the homogeneous Markov chain (P, A) is irreducible, aperiodic, and satisfies

detailed balance, then P is invariant for A. That is, the Markov chain (P, A) is

stationary. Furthermore, if another homogeneous Markov chain (P0, A) is irreducible

and aperiodic, then for all ω ∈ Ω, Pn(ω)→ P (ω) as n→∞.

Remark. Some authors call this the ergodic theorem; yet, others call our theorem
4.2.9 the ergodic theorem. It also may be thought of as a special case of the Perron-
Frobenius theorem, applied to the Markov transition matrix A.

Proof. See [Lawler], sections 1.2 and 1.3.

We say P (PGibbs in the context of random permutations) is the stationary distri-

bution or invariant distribution for A. We say that it is also a limiting distribution

for any initial distribution P0 satisfying the above hypotheses.

Example 4.2.8. ⊲ Continuing example 4.2.3: If we initially roll the die, we start
with the uniform distribution which is stationary for the die-tipping rule:

P0 =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

P1 = P0 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

...

If we start with the one-face up, we begin with the singleton initial distribution which
is not stationary for the die-tipping rule. Yet, subsequent tips have a distribution
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which tends toward the limiting, uniform distribution:

P0 =
(

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
)

P1 = P0 A =
(

0.0000 0.2500 0.2500 0.2500 0.2500 0.0000
)

P2 = P1 A =
(

0.2500 0.1250 0.1250 0.1250 0.1250 0.2500
)

P3 = P2 A =
(

0.1250 0.1875 0.1875 0.1875 0.1875 0.1250
)

P4 = P3 A =
(

0.1875 0.1562 0.1562 0.1562 0.1562 0.1875
)

P5 = P4 A =
(

0.1562 0.1719 0.1719 0.1719 0.1719 0.1562
)

...

P14 = P13 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

P15 = P14 A =
(

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
)

...

⊳

Importantly, for simulations using the model of random spatial permutations, we
need not know a priori what a typical permutation looks like. We may start always
with the identity permutation, i.e. P0 is the singleton distribution supported on the
identity permutation. We may then run the Markov chain, producing a sequence
of permutations. As the number of iterations goes to infinity, the distribution of
permutations approaches PGibbs: for all π ∈ SN , P

(π0)
k (π)→ PGibbs(π) as k →∞.

The specific number k of iterations needed for convergence of P
(π0)
k to PGibbs is

another matter entirely. The theory exposited by [Lawler], as noted above, guaran-
tees that a Markov matrix A with PGibbs as its invariant distribution has no other
invariant distribution: A has a single eigenvalue 1 with eigenvector PGibbs. The rate of
convergence of P

(π0)
k to PGibbs depends on the second-largest eigenvalue for A, which

one in general does not know how to compute. In practice, this mixing time (or
burn-in time or thermalization time) is estimated using techniques such as those in
section 9.6.

The theory above also does not tell us how to construct a Markov matrix A having
a desired distribution PGibbs as its invariant distribution — it simply tells us what
we can do once we have constructed such a matrix. A specific construction is due to
Nicholas Metropolis [Berg, LB, CB]. The essence is that if the invariant probability
distribution PGibbs is defined as a Gibbs measure via an energy function H on Ω, then
proposed successor states πk+1 of πk are accepted with probability min{1, e−∆H}
where ∆H is the energy difference for the state change. In this dissertation, I directly
prove that such methods result in detailed balance. Thus, the reader is referred to
propositions 5.3.6 and 7.7.5 for details.

We next show that the sample mean 〈X〉M (equation (4.0.1) on page 40) converges
to the true mean E[X] (equation (2.1.6) on page 23).
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Theorem 4.2.9 (Ergodic sampling theorem). Let X be a random variable on the

finite probability space (Ω, 2Ω, P ) where 2Ω is the power set of Ω. If the stationary,

homogeneous Markov chain (P, A) satisfies the hypotheses of theorem 4.2.7, then

1

M

M
∑

k=1

X(Sk)→ E[X] as M →∞.

Remark. Some authors call this this ergodic theorem; yet, others call our theorem
4.2.7 the ergodic theorem.

Proof. This follows from theorem 4.2.7 using the central-limit theorem for identically
distributed but non-independent Si’s.

4.3 Sample means and their variances

There is one caveat to replacing the true mean E[X] with the MCMC sample mean
〈X〉M : the naive computation of the standard deviation of the sample mean, which
is correct for independent identically distributed states, is a significantly incorrect
underestimate for the standard deviation of the sample mean in the case of identically
distributed but correlated states. This issue is so important that appendix B is
devoted to it. The key result of that appendix is that the standard deviation (error
bar) of the sample mean 〈X〉M is off by a factor of the square root of the integrated

autocorrelation time,
√

τ̂int(X), which is computed as described in section B.10.

4.4 Simple example: 1D Ising

For an example which is more complex than die-tipping but less complex than random
spatial permutations, consider the 1D N -point Ising model. Namely, the configuration
space is Ω = {±1}N , i.e. N particles which may be in either an up (filled) or a down
(hollow) state:

A state is described by ω = (ω1, . . . , ωn). The configuration space Ω has 2N possible
configurations. The system is endowed with an energy function. For the 1D Ising
model, one has

H(ω) =

n
∑

i=1

n
∑

j=1

Cijωiωj +

n
∑

i=1

hiωi.

where the Cij ’s are interaction terms (non-interacting, nearest neighbor, mean-field,
etc.) and the hi’s are magnetization terms. Given a temperature-related parameter
β, one sets the (Gibbs) probability of each configuration to be proportional to e−βH .
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One picks an initial configuration. There are three obvious choices: (1) Start
with all spins down, i.e. ω = (−1, . . . ,−1). (2) Start with all spins up, i.e. ω =
(+1, . . . , +1). (3) Start with ω selected from a uniform probability distribution on
Ω. Then, one selects a site i and decides whether to flip ωi to −ωi.

P (change) = min{1, e−∆H}

This decision is made using the Metropolis prescription, namely:

• One computes the change in energy ∆H = H(ω′) − H(ω) which would be
obtained if ω were sent to ω

′ by flipping ωi.

• One may compute ∆H by separately computing H(ω′) and H(ω) and subtract-
ing the two. However, since the only change is at the site i, one may do some
ad-hoc algebra to derive an expression for ∆H which is less computationally
expensive.

• One accepts the change with probability min{1, e−∆H}.

This is called a Metropolis step.
Looping through all n sites from i = 1 to i = n, performing a Metropolis step at

each site i, is called a Metropolis sweep. If one realizes a random variable X(ω) at
each of M sweeps, averaging X over the M sweeps, one obtains an approximation
〈X〉M for the expectation E[X].

As discussed at the end of section 4.2, one should first run some number B of
Metropolis sweeps of the system until it is thermalized, i.e. until the Gibbs distri-
bution has been approached. One should discard the B realizations of the random
variable X obtained during thermalization, before running the M sweeps in which
data are accumulated. The B sweeps are called the thermalization phase; the M
sweeps are called the accumulation phase.

4.5 Recipe for MCMC algorithms

The naive outline of an MCMC run is simple:

• Use a Markov chain, discussed at the end of this section, to generate a sequence
π1, . . . , πM of permutations.

• For each permutation πk, for each random variable X of interest, remember the
value Xk = X(πk).
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• Compute the sample mean X = 1
M

∑M

k=1 Xk. Also compute the sample standard
deviation, and any other desired statistics.

• Display the statistics.

Since the initial permutation is the identity, the initial distribution is the singleton
supported at the identity, which is not the Gibbs distribution PGibbs. Furthermore, as
a very low-energy state, the identity is highly non-typical with respect to the Gibbs
distribution (equation (2.1.4)) for the model of spatial permutations. As discussed
at the end of section 4.2, one runs the chain until it is thermalized, i.e. until the
Gibbs distribution has been approached. (The number of steps τ required for this is
random, but it turns out to fall within a narrow range.) Renumbering πτ to π0, one
then accumulates statistics over the M permutations π1, . . . , πM . See section 9.6 for
the thermalization-detection algorithm used in this dissertation.

Thus the computational recipe is as follows:

• Start with the initial permutation being the identity permutation.

• Run the Markov chain, generating a sequence of permutations until thermal-
ization has been detected. At that point, rename the current permutation π0.

• Continue generating a sequence π1, . . . , πM of permutations. The mechanics of
transitioning from πk to πk+1 comprises a series of steps , which collectively form
the kth sweep. Various types of sweep — swap-only, swap-and-reverse, swaps
with band updates, and worm — are presented in chapters 5, 6, and 7.

• For each permutation πk, for each random variable X of interest, remember the
value Xk = X(πk).

• After all M permutations have been generated, compute the sample mean
X = 1

M

∑M

k=1 Xk. Also compute the sample standard deviation and its error
bar (using estimated integrated autocorrelation time), and any other desired
statistics, such as histograms.

• Display the statistics.

Given the framework established by previous sections of this chapter, the recipe to
prove correctness of this algorithm reduces to the following: define a Markov chain,
then prove irreducibility, aperiodicity, and detailed balance. We devote the next
chapters to present three Markov chains: the swap-only algorithm, the swap-and-
reverse algorithms, and the worm algorithm.


