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Chapter 2

The model of random spatial permutations

Here we review concepts from [BU07, BU08], fixing notation and intuition to be used
in the rest of the paper.

2.1 The probability model

Our state space is
ΩΛ,N = ΛN × SN

where Λ = [0, L]3 with periodic boundary conditions and SN is the group of permu-
tations of N points1. Point positions are X = (x1, . . . ,xN) for x1, . . . ,xN ∈ Λ. These
are called spatial permutations in that they involve the permutation π as well as the
N point positions x1, . . . ,xN . See figure 2.1.

The probability measure on this state space will be constructed via Gibbs measure,
PGibbs = e−H/Z, on a Hamiltonian H . The background probability measure is discrete
(uniform) in π and continuous (Lebesgue) in X. The Hamiltonian takes one of two
forms. In the first, relevant to the Bose gas, we have

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖
2
Λ +

∑

1≤i<j≤N

V (xi,xπ(i),xj,xπ(j)) (2.1.1)

where T = 1/β and the V terms are interactions between permutation jumps. The
notation ‖ · ‖Λ indicates the natural distance on the 3-torus:

‖x − y‖Λ = min
n∈Z3

{‖x− y + Ln‖} (2.1.2)

For the V terms in equation (2.1.1), the permutation jump xi 7→ xπ(i) interacts with
the permutation jump xj 7→ xπ(j). The temperature scale factor T/4, not β/4, is
atypical in statistical mechanics. For purposes of the current work, this may be
considered an ansatz; in [BU07], this choice of scale factor is shown to be appropriate
for permutation representation of the Bose gas. In particular, as will be explained
in more detail below, only the identity permutation appears at high T , and (with
V ≡ 0) uniformly weighted permutations appear at zero T .

1One may of course consider Λ = [0, L]d for d = 1, 2, but for this paper, d = 3 only.
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Figure 2.1. A spatial permutation on N = 26 points. There are 11 one-cycles,
three two-cycles, one four-cycle, and one five-cycle. We say r1(π) = 11, r2(π) = 3,
r4(π) = 1, r5(π) = 1, and rℓ(π) = 0 for all other ℓ.

In the second form of the Hamiltonian, considered in this paper, we use interac-
tions which are dependent solely on cycle lengths:

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖
2
Λ +

N
∑

ℓ=1

αℓrℓ(π), (2.1.3)

where rℓ(π) is the number of ℓ-cycles in π, for ℓ from 1 and N , and the αℓ’s are free pa-
rameters, called cycle weights. One ultimately hopes to choose the αℓ’s appropriately
for the Bose gas; even if not, the model is well-defined and of its own mathematical
interest.

The first contribution to the energy2 is the sum of squares of permutation jump
lengths. Since we will use a Gibbs distribution with PGibbs = e−H/Z, the highest-
probability permutations will be the ones with lowest energy. Thus, permutations
with long jumps will be disfavored; permutations with many short jumps will be less
strongly disfavored. The second contribution to the energy involves cycle weights. We
consider only small cycle weights, which perturb the critical temperature but which
do not qualitatively modify the effects of the distance-related terms. More intuition
for the model will be presented in section 2.3.

Choices of point positions x1, . . . ,xN yield two cases: (1) In the annealed model,
point positions are variable in the continuum and are averaged over. One has a particle
density ρ = N/L3. This model is examined analytically in [BU07, U07, BU08]. (2) In
the quenched model, point positions are held fixed. Specifically, we consider N = L3

points on the fully occupied integer-indexed sites of the L×L×L cubic lattice. This
model is examined simulationally in [GRU] and in this dissertation. We often write

2The papers [BU07] and [U07] generalize from ‖xi−xπ(i)‖Λ to ξ(xi,xπ(i)) where ξ is a spherically

symmetric non-negative-valued function on R
d having integrable e−ξ. This generalization is not of

interest in this dissertation.
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H(π) in place of H(X, π) since we either work on a lattice where the xi’s are held
fixed, or on the continuum where the xi’s are integrated out. Thus, the system energy
H (as well as all other random variables we consider) is a function of the permutation
π.

We consider two partition functions, for a fixed point configuration X and for an
average over point configurations, respectively:

Y (Λ,X) =
∑

σ∈SN

e−H(X,σ) and Z(Λ, N) =
1

N !

∫

ΛN

Y (Λ,X) dX.

Fixing point positions X, we have a discrete distribution on π:

Y (Λ,X) =
∑

σ∈SN

e−H(X,σ), PGibbs(π) = PΛ,X(π) =
e−H(X,π)

Y (Λ,X)
. (2.1.4)

For varying point positions (e.g. for considerations of the Bose gas), we have a joint
distribution which is continuous in X and discrete in π:

PΛ,N(X, π) dX =
e−H(X,π)dX

Z(Λ, N)
.

From this we obtain two marginal distributions. If we integrate over point configura-
tions X, then we obtain a discrete distribution on SN :

PΛ,N(π) =
1

N !

∫

ΛN

dXPΛ,N(X, π) =
1

N !

∫

ΛN dX e−H(X,π)

1
N !

∫

ΛN dX
∑

σ∈SN
e−H(X,σ)

=

∫

ΛN dX e−H(X,π)

Z(Λ, N) N !
.

If, on the other hand, we sum over permutations, then we obtain a continuous distri-
bution for point configurations:

PΛ,N(X) dX =
∑

π∈SN

PΛ,N(X, π) dX =
Y (Λ,X) dX

Z(Λ, N)
. (2.1.5)

This continuous distribution is certainly of interest: it is the point distribution for the
Bose gas, when the Hamiltonian is appropriately chosen. However, it is very difficult
to compute: this is but one of several results in [LLS]. From here on, we consider the
two discrete distributions on SN , namely, PΛ,X(π) and PΛ,N(π).

For a random variable X(π), we have

EΛ,X[X] =

∑

π∈SN
X(π)e−H(X,π)

Y (Λ,X)
and EΛ,N [X] =

∫

ΛN dX
∑

π∈SN
X(π)e−H(X,π)

Z(Λ, N)N !
.

In either case, we also write the probability as PGibbs(π) and the expectation as

E[X] =
∑

π∈SN

PGibbs(π)X(π). (2.1.6)



24

2.2 Model variants by choice of cycle weights

The model of random spatial permutations is in fact a family of models. As described
in the previous section, point positions may be annealed or quenched, the latter being
the case for this dissertation. Likewise, various constraints may be placed on the cycle
weights. Recall from equation (2.1.3) that

H(X, π) =
T

4

N
∑

i=1

‖xi − xπ(i)‖
2
Λ +

N
∑

ℓ=1

αℓrℓ(π). (2.2.1)

There are N free parameters αℓ, and thus many models of spatial permutations. (See
also figure 2.2.)

General V

Bose gas V V with αℓ cycle weights

Non-interacting special case

α2 weight only

Decaying αℓ’s

Constant αℓ’s (Ewens)

General point positions

Point positions Lattice
point positionson continuum,

integrated out

equation (2.1.1) equation (2.1.3)

[BU07, U07] (continuum)

[BU08] (continuum)

This dissertation (lattice)

[GRU] (lattice)

Bose gas αℓ’s
[BU10] (continuum)

General-cycle model

Figure 2.2. Model variants by choice of point positions and choice of cycle weights.

If αℓ = 0 for all ℓ, one obtains the non-interacting case. When α2 = α and
αℓ = 0 for ℓ 6= 2, we have the two-cycle model [BU07, U07] in which two-cycles
are discouraged as α is increased. Otherwise, we have the general-cycle model. This



25

splits into (at least) three submodels: Betz and Ueltschi, in [BU08], consider the
case where αℓ tend toward zero faster than 1/ log(ℓ). (Note that this includes the
two-cycle model as a special case.) Ideally, one would have αℓ’s which match the
Brownian-bridge interactions for the Bose gas (appendix A). Work in this direction
has recently been done by Betz and Ueltschi [BU10], but is beyond the scope of this
dissertation.

For this dissertation, we consider the case where αℓ = α is constant in ℓ. We call
this the spatial Ewens distribution [Ewens]. In summary, the model considered in this
dissertation uses point positions held fixed on the fully occupied cubic unit lattice,
with small non-negative Ewens cycle weights.

2.3 Qualitative characterization of long cycles

Having seen definitions for the probability model, one next asks what a typical random
spatial permutation looks like. In this section we develop intuition; in section 3.7, we
construct quantitative descriptions of the ideas presented here.

Figure 2.3. Points and permutation jumps, for a typical permutation at high T
(there are only small cycles of short jumps), medium but subcritical T (all jump
lengths are short, with occasional long cycles thereof), and low T (jump lengths are
arbitrary).

As T → ∞, the probability measure becomes supported only on the identity
permutation: the distance-dependent terms in equation (2.1.3) are large whenever
any jump has non-zero length. For large but finite T , the length-dependent terms
penalize permutation jumps from a site to any site other than itself. Thus, for large
T we expect the identity permutation to be the most likely, with occasional 2-cycles,
3-cycles, etc. which involve nearby points. On the other extreme, as T → 0, length-
dependent terms go to zero and the probability measure approaches the uniform
distribution on SN : the distance-dependent terms all go to zero. For intermediate T ,
one observes that the length ‖π(x) − x‖Λ of each permutation jump remains small,
increasing smoothly as T drops. See figure 9.8 on page 99 for more precise information.
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The intermediate-temperature regime is the one of interest. As is found in theo-
retical and simulational work, as detailed through the rest of this dissertation, this
regime has the following properties. There is a phase transition: for T below a criti-
cal temperature Tc, while individual jump lengths remain short (i.e. we work in the
short-jump-length regime), arbitrarily long cycles form. See figure 2.3 for depictions
of typical permutations at high T , subcritical T , and low T . In the non-interacting
case, Tc(0) is approximately 6.87; interactions — in the form of positive α terms —
increase Tc(α). Quantifying that dependence, i.e.

∆Tc(α) =
Tc(α) − Tc(0)

Tc(0)
, (2.3.1)

as a function of α for small positive α, is the central goal of this dissertation.
From figures such as 2.3, one can detect long cycles visually. How do we measure

them numerically? Let ℓmax(π) be the length of the longest cycle in π, with E[ℓmax]
its mean over all permutations. We take N = L3 points on the L × L × L unit
lattice with periodic boundary conditions. We observe that for T above Tc, E[ℓmax]
increases only perhaps as fast as log L. That is to say, E[ℓmax]/N goes to zero as
L → ∞. For T below Tc, the length of the longest cycle does increase as L increases
— we find that E[ℓmax] scales with N . (This is one of the results of [Sütő1]; it is
perhaps surprising that the scaling is by N = L3 rather than, say, L2.) That is to
say, E[ℓmax]/N approaches a temperature-dependent constant as L → ∞; there are
arbitrarily long cycles, or infinite cycles, in the infinite-volume limit. See figure 2.4 for
plots of E[ℓmax]/N as a function of T for various system sizes with N = L3. See also
figure 9.10 on page 101. Precise information about E[ℓmax]/N and other quantities is
found in section 3.7.

2.4 Known results

In this dissertation we study chiefly the α-dependent shift in critical temperature
for Ewens cycle weights and cubic-lattice point positions. We will also consider an
α-dependent macroscopic-cycle quotient, to be defined below. Here we survey known
results for related models — namely, other cycle weights as described in section 2.2,
and point positions integrated over the continuum — before stating our conjectures
for our model in section 2.5.

Known results for point locations averaged over the continuum (as discussed in
section 2.1) are obtained largely using Fourier methods [BU08] which are unavailable
for point positions held fixed on the lattice. Betz and Ueltschi have determined
∆Tc(α), to first order in α, for two-cycle interactions [BU07] and decaying cycle
weights [BU08]. The critical (ρ, T, α) manifold relates ρc to Tc. Specifically, they
obtain the following, with the decaying-cycle-weight constraint on the cycle weights
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Figure 2.4. Order parameter fmax = E[ℓmax]/N for finite systems, with α = 0, 0.001.
Interactions increase the critical temperature.

{αℓ}:

ρc(α1, α2, . . .) =
1

(4πβ)3/2

∑

ℓ≥1

e−αℓℓ−3/2. (2.4.1)

In the non-interacting special case, all cycle weights are zero, and we have

ρc(0) =
1

(4πβ)3/2

∑

ℓ≥1

ℓ−3/2 =
ζ(3/2)

(4πβ)3/2
(2.4.2)

where ζ is the Riemann zeta function. For the two-cycle special case [BU07], α2 is
non-zero, and the other cycle weights are zero. We have

ρc(α) =
1

(4πβ)3/2

(

e−α2−3/2 +
∑

ℓ 6=2

e−αℓℓ−3/2

)

= ρc(0) +
(e−α − 1)

(8πβ)3/2
.

In addition to our main interest on the shift in critical temperature (here, phrased
in terms of critical density), we also examine the fraction of sites in macroscopic cycles.
As will be discussed in more detail in sections 3.4 and 3.5, ℓmax is the length of the
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longest cycle of a permutation; fI will quantify the fraction of sites participating
in long cycles. For αℓ ≡ 0 (the non-interacting model), one observes empirically
that the macroscopic-cycle quotient E[ℓmax]/NfI is constant for T below but near
Tc. (That is, the two order parameters fI and E[ℓmax]/N have the same critical
exponent.) For uniform-random (non-spatial) permutations, Shepp and Lloyd 1966
[SL] solved Golomb’s 1964 question [Golomb]: E[ℓmax]/N ≈ 0.6243. Unpublished
work of Betz and Ueltschi has found E[ℓmax]/NfI holds that same value for random
spatial permutations in the non-interacting case αℓ ≡ 0. The intuition is that long
cycles are uniformly distributed within the zero Fourier mode.

2.5 Conjectures

Equation (2.4.1) gives ρc as a function of β = 1/T . For the cubic unit lattice, we fix
ρ ≡ 1 and thus obtain βc, or equivalently Tc:

Tc(α1, α2, . . .) =
4π

(
∑

ℓ≥1 e−αℓℓ−3/2
)2/3

. (2.5.1)

For the non-interacting special case, this is

Tc(0) =
4π

ζ(3/2)2/3
≈ 6.625. (2.5.2)

The Ewens-cycle-weight case does not satisfy the decaying-cycle-weight constraint
where the αℓ’s must go to zero in ℓ faster than 1/ log(ℓ); all the αℓ’s are the same.
Nonetheless, using equation (2.5.1), we obtain

Tc(α) =
4π

[e−αζ(3/2)]2/3
≈ 6.625e2α/3.

Taylor-expanding in the small parameter α, the shift in critical temperature is then

∆Tc(α) =
Tc(α) − Tc(0)

Tc(0)
= e2α/3 − 1 ≈

2α

3
and c ≈ 0.667. (2.5.3)

(Note that this is not in conflict with the constant c in section 1.4, which through
abuse of notation we also called c. There, one examines ∆Tc(a) where a is the
scattering length of the interacting Bose gas; here, one has ∆Tc(α) for free parameter
α.)

As the primary goal of this dissertation, we inquire whether this result, obtained
for decaying cycle weights with point positions varying on the continuum, holds for
Ewens weights with point positions held fixed on the lattice. We suspect that the
fine details of point positions are unimportant for the shift in critical temperature.
For Ewens interactions, ∆Tc(α) is theoretically unknown for points either on the
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continuum or on the lattice. The simulational treatment in this dissertation is the
only known attack on this question.

Secondarily, we conjecture that E[ℓmax]/NfI , as discussed in section 2.4, is α-
dependent but constant in T (for T below but near Tc) for our model of lattice point
positions and Ewens cycle weights.


